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Abstract— Recent advances in intracortical brain-machine
interfaces (BMIs) for position control have leveraged state
estimators to decode intended movements from cortical activity.
We revisit the underlying assumptions behind the use of
Kalman filters in this context, focusing on the fact that identified
cortical coding models capture closed-loop task dynamics. We
show that closed-loop models can be partitioned, exposing
feedback policies of the brain which are separate from interface
and task dynamics. Changing task dynamics may cause the
brain to change its control policy, and consequently the closed-
loop dynamics. This may degrade performance of decoders
upon switching from manual tasks to velocity-controlled BMI-
mediated tasks. We provide experimental results showing that
for the same manual cursor task, changing system order affects
neural coding of movement. In one experimental condition
force determines position directly, and in the other force
determines cursor velocity. From this we draw an analogy to
subjects transitioning from manual reaching tasks to velocity-
controlled BMI tasks. We conclude with suggested principles
for improving BMI decoder performance, including matching
the controlled system order between manual and brain control,
and identifying the brain’s controller dynamics rather than
complete closed-loop dynamics.

I. INTRODUCTION

Brain-machine interfaces (BMIs) convert movement in-
tentions, represented in recorded cortical activity, into com-
mands for an external system. Here we are concerned with
those designed to provide continuous position control of a
computer cursor or robotic arm.

BMIs are often developed by first identifying the relation-
ship between native limb movement and cortical activity [2],
[4], [6], [11]. This is historically driven by assumptions
of firing rate coding for movement according to cosine
tuning functions [3]. The identified model can be used to
implement a state estimator which predicts limb kinematics
using cortical activity. Next, decoded limb velocity is mapped
to cursor velocity, adding an integrator to the external task
dynamics compared to the manual control case.

This material is based on work supported by National Science Foundation
(NSF) Graduate Research Fellowhsip Program Grant No. DGE-1256082
to AH, a grant from the Center for Sensorimotor Neural Engineering,
an NSF Engineering Research Center (EEC-1028725), to CM, and an
American Heart & Stroke Association Scientist Development Grant (NCRP
09SDG2230091) to CTM. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the NSF or AHA.

1Department of Electrical Engineering, University of Washington, Seattle,
WA, USA {cmatlack, haddock,chizeck} @uw.edu

2Departments of Rehabilitation Medicine and Physiology and Biophysics,
University of Washington, Seattle, WA, USA ctmoritz@uw.edu

3Center for Sensorimotor Neural Engineering, University of Washington,
Seattle, WA, USA

This approach has been used by several research
groups [2], [4], [6], [11], in particular when the identified
model is a linear state space system and a Kalman filter is
used as the state estimator. In this paper, we revisit the mod-
eling assumptions underlying the use of Kalman filters, and
suggest alternative interpretations for the identified models.
We consider that manual reaching tasks involve dynamics
that are quite different from velocity-controlled BMI tasks.
This leads us to question whether a change to the controlled
system will result in changes to the cortical representation of
task state, which could violate the expectation of a decoder-
based BMI.

In Section II, we motivate our hypothesis by reviewing
the use of system identification and Kalman filters in BMI
studies. We then describe a set of experiments in Section III
which allow us to test this hypothesis in Section IV. Finally,
in Section V we discuss the implications of our findings for
BMI design, and suggest areas for future work to improve our
understanding of how cortical task representation changes
across different manual tasks and BMI control.

II. BACKGROUND

A. Modeling Approaches

The basic system model used for Kalman filters in many
BMI studies is the discrete-time state-space system defined
by

x[t+ 1] = Ax[t] +w[t] (1)
y[t] = Cx[t] + q[t] (2)

where x[t] represents task or limb state including position
and one or two derivatives; y[t] represents recorded cortical
activity; and the system is driven by Gaussian noise terms
w[t] v N (0,W) and q[t] v N (0,Q). The state x[t] is
intended to capture actual kinematic task states during man-
ual control, and intended task states during BMI-mediated
control. This paradigm was first applied in [11].

There are multiple problematic assumptions implicit in this
modeling approach, some of which have been addressed by
more recent innovations. First, the only external inputs to
the system are noise; no control action by the subject is
explicitly represented. Additionally, it assumes that the brain
has a perfect observation (or estimate, x̂[t]) of task state, i.e.
x̂[t] = x[t]. The problem of assuming perfect estimation is
in part driven by known delays in neural sensory processing.

One approach for incorporating these latencies into the
model is to fit a time shift between external task state and

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 2553



cortical activity, as in [11]. In that study, the authors assume a
time lag between neural activity and kinematic state, and test
which positive value results in the best reconstruction based
on mean-squared error (MSE) and correlation coefficient
(R2).

More recent studies have explicity incorporated assump-
tions about task state estimation in cortex into the models
used with Kalman filters. In [4], the standard Kalman filter
update algorithm is modified to reflect an assumption that the
subject is able to eliminate internal model uncertainty about
cursor kinematic states at each timestep. This is implemented
mathematically by setting the position estimate uncertainty
to zero, termed ‘causal intervention’. An additional change
to the standard Kalman filter in [4] and later work [2]
is assigning some model parameters based on assumptions
about dynamics. For example, integrated velocity should
perfectly describe position, so necessary entries in A are
set to zero after performing an unconstrained model fit.

A further refinement to the modeling of visual process-
ing combined with state estimation in cortex is presented
in [5]. Here, cortical state estimates are assumed to involve
forward prediction from delayed visual information, and
the appropriate prediction interval is identified from data
recorded during BMI-mediated tasks. This can be performed
under the assumption that neural activity is based on the
brain’s immediate movement intentions, in turn are based on
immediate state estimates. Importantly, that study’s results
show that a predictable error exists between ground-truth task
state and instantaneous cortical estimates of task state.

B. Partitioning the Model

The closed-loop task dynamics captured by A may con-
ceal separable forward task dynamics and feedback control
dynamics. For example, consider the simple case of full-
state feedback, wherein the controller applies a gain to each
component of the task state vector, as shown in Figure 1.
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Fig. 1. Block diagram of a full-state feedback model of manual cursor
control. The task state represents the cursor kinematics, and the control
input is muscle force. Note that the cortical feedback controller only has
access to its estimate of cursor state.

Under this scenario, and assuming perfect cursor state
estimation, the autonomous dynamics of the closed-loop
system are given by A = (Ã−BK). The control policy of
the brain is captured by K, and is separate from the control
interface, B, and autonomous task dynamics, Ã. If either

component of the task dynamics changes, then the control
gains may also change, and the closed-loop autonomous
dynamics captured by A may change as well. Some changes
to the values of these parameters can in principle be perfectly
compensated for by the brain, but studies varying control-
display gain in manual cursor positioning tasks reveal that
this is not done [1], [10]. However, changes to the task
system order, such as by changing the form of B and the
mapping of control input to task kinematics, will inevitably
cause changes to the closed-loop dynamics. Such changes
cannot be compensated for by any change in control strategy.

The simple full-state feedback model can capture only
proportional control policies; it cannot capture feed-forward
control actions resulting from path planning by the subject,
nor can it capture more complex policies such as integral
control. A much wider variety of feedback controllers can be
captured if the controller is assumed to have its own dynam-
ics and internal state variables. All of these possibilities, save
the full-state feedback case, cannot be captured by closed-
loop dynamical models assumed to have internal states equal
to the task kinematics.

In this study, we test whether adding an external integrator
to the task dynamics changes cortical representation of task
state during manual control.

III. METHODS

A. Electrophysiology

A macaque is implanted with dual 96-channel micro-
electrode arrays (Blackrock Microsystems, Salt Lake City,
UT), bilaterally in motor cortex, which are connected to
a 128-channel Cerebus neural signal processor (Blackrock).
Manually set time-voltage criteria are used for online spike
sorting, which is recorded at 30KHz for offline analysis.
Custom LabVIEW software (National Instruments) is used to
implement the BMI decoding algorithm and behavioral tasks.
We conduct experiments in a primate behavior booth outfitted
with a computer monitor, buzzers, and a computer-controlled
feeder containing apple sauce. The animal’s arm is situated in
a custom 2-DOF near-isometric manipulandum. A computer
monitor, is 30 cm x 23 cm (W x H), is located 28 cm in front
of the animal’s head. A neural decoding algorithm and cursor
task operate at a sampling rate of 60Hz, with the display
refreshed at 30Hz. The BMI system input-output latency is
measured to be about 50ms. All procedures were approved
by the University of Washington Institutional Animal Care
and Use Committee.

B. Experiment Design

The manipulandum is used for task training and to mea-
sure neural correlates of motor activity. This eliminates the
possibility that neural activity is accounted for by tuning
functions to limb kinematics or dynamics, since there are
minimal postural changes.

The animal performs two variations on a 2D “pinball”
task: one in which manipulandum torque is mapped to cursor
velocity (velocity control), and one in which manipulandum
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torque is mapped directly to cursor position (position con-
trol). Thus, the task dynamics of velocity control are a single
integrator, while the task dynamics under position control are
a one-to-one mapping with no internal state. We compare
these experimental conditions with those in a BMI training
and testing paradigm in Figure 2.
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Fig. 2. A) During training for BMI implementation, second-order task
dynamics are created by the physical (limb) system and are natively
observable to the subject via proprioception. B) During BMI-mediated
control, a new integrator is added by decoding velocity. C) Experimental
variations tested in the present study using an isometric control interface.
Force is mapped either directly to position or to cursor velocity during
manual control, and cursor velocity is decoded from cortical activity offline.

Blocks of tens of trials are performed under a given
condition, with short breaks and other conditions interspersed
between position and velocity control blocks. This allows
us to test whether the task dynamics, in particular system
order, effect cortical representation of task while visual task
feedback is held constant. If cortical representation changes,
then this would suggest that task dynamics should be held
constant between decoder training and BMI control.

IV. RESULTS

We aim to determine whether adding an integrator to
external task dynamics degrades decoder performance. To
do this, we identify cortical coding models using position- or
velocity-controlled trial data, then test those models against
velocity-controlled trials from the same experimental session.
This is analogous to the integrator added to external task
dynamics in BMIs which are controlled by decoded velocity
estimates.

We use two types of models to estimate task kinemat-
ics from neural activity: linear estimators, based on the
population vector algorithm [3], and Kalman filters. The
linear estimator has no built-in assumptions about closed-
loop task dynamics, and only identifies the relationship be-
tween instantaneous dynamic state and cortical activity. The
state-space model used in the Kalman filter does explicitly

model closed-loop task dynamics, as discussed above. For
consistency with the decoding paradigm of BMI design,
we assessed model power by predicting task state based on
cortical activity.

Before performing system identification or testing model
prediction, we filtered spike counts (recorded at 60Hz) and
cursor states with a Gaussian filter, σ = 0.05s, and decimated
the sampled data by a factor of three. As recommended
in [8], this restricts identification and prediction to the
input/output relationships we believe exists in the data and
filters out process noise in the spike data. Additionally, we
truncated trajectories to begin at the first time at which the
cursor moved towards the target, thus eliminating undirected
movements while the subject was still reacting to a new task
presentation. Model identification and trajectory reconstruc-
tion were then performed in error coordinates, so that the
modeled closed-loop system would be stable to the origin.
Example trajectory reconstructions are shown in Figure 3.
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Fig. 3. Magnitude of cursor position estimate error (top) and velocity es-
timate error (bottom) during a velocity-controlled trial. KF denotes Kalman
filter prediction, while LE denotes linear estimator prediction.

We identify a model for a given block of trials, then
evaluate its performance with all other velocity-controlled
trial blocks in the same experimental session. We test models
by evaluating R2 coefficients for reconstruction of cursor
position and velocity for a given block of test trials. In this
way we control for time variability of neural coding. We
group resulting model performance according to the task type
we used to identify the model. The results of this process are
shown in Figure 4.

The significant change in model performance across task
system order supports our hypothesis that changes in cortical
representation of the task occur. Recall, however, that this
decoding approach includes assumptions about closed-loop
task dynamics, which are violated by a change in task system
order.

We next repeat the analysis using linear estimators, fit
using a simple linear regression of kinematics against cortical
activity. The use of a linear estimator removes any as-
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Fig. 4. Cursor velocity decoder performance across conditions. Each
distribution is the correlation coefficients for performance of a model
identified under the task type in the label, tested against trials of velocity
control. The results indicate that velocity prediction error increases if
the task condition changes between model identification and testing. In
particular, we see a significant (***p < 0.001, Wilcoxon rank-sum test)
decrease in performance when a decoder identified from velocity-controlled
trials is applied to position-controlled trials.

sumptions about closed-loop dynamics, and therefore should
specifically decode cortical representation of instantaneous
task state in isolation. These results suggest that cortical
representation of task state is in fact changed by a change
in the controlled system order.

V. DISCUSSION

We have shown that cortical decoding performance of task
state changes as a consequence of changes to the controlled
system order, without changing the control interface. This
change is evident even with a linear decoding algorithm,
which has no implicit assumptions about closed-loop task
dynamics.

Prior studies have shown that motor cortical neurons adapt
their tuning properties in response to changes in directional
mapping of force [7] and directional profile of forces required
for movement [9]. In our study, the experimental manipula-
tion added task dynamics unobservable via proprioception,
requiring the subject to use visual observation alone to
estimate task state. This is more analogous to the transition
from direct manual cursor control to velocity control of a
cursor using decoded cortical signals, as is done in BMI
paradigms.

This suggests that the change in task dynamic system
order, such as when mapping estimated velocity to com-
manded cursor velocity during BMI control, may cause
substantial changes in cortical task representation. This

would effectively invalidate the identified model, causing
poor performance. This is how current decoding efforts are
being performed [2], [4].

Recent studies have shown remarkable performance im-
provements via closed-loop decoder adaptation (CLDA) after
initializing a BMI using an identified dynamic model of
manual control [2]. It is possible that learning rate could
be substantially improved, even under the CLDA paradigm,
by matching the controlled system dynamics as much as
possible between manual and BMI-mediated control.

ACKNOWLEDGMENT

We thank Rob Robinson for his invaluable work training
the subject animal, conducting experiments, and providing
helpful feedback on experiment design.

REFERENCES
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