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Abstract—Dexterous arm reaching movements are a critical 

feature that allow human interactions with tools, the 

environment, and socially with others. Thus the development of 

a neural architecture providing unified mechanisms for actual, 

mental, observed and imitated actions could enhance robot 

performance, enhance human-robot social interactions, and 

inform specific human brain processes. Here we present a 

model, including a fronto-parietal network that implements 

sensorimotor transformations (inverse kinematics, workspace 

visuo-spatial rotations), for self-intended and imitation 

performance. Our findings revealed that this neural model can 

perform accurate and robust 3D actual/mental arm reaching 

while reproducing human-like kinematics. Also, using visuo-

spatial remapping, the neural model can imitate arm reaching 

independently of a demonstrator-imitator viewpoint. This work 

is a first step towards providing the basis of a future neural 

architecture for combining cognitive and sensorimotor 

processing levels that will allow for multi-level mental 

simulation when executing actual, mental, observed, and 

imitated actions for dexterous arm movements. 

I. INTRODUCTION 

Human reaching skills are critical to flexibly interacting 

with our environment and others in social settings. Although 

redundant multi-jointed arms can produce various trajectories 

and postures, such kinematic redundancy is a complex 

problem since the mapping between sensory and motor 

spaces is highly nonlinear and depends on changing 

environmental constraints such as obstacles or perturbations 

[1]. Thus, the performance of 3D reaching movements with 

redundant, multi-jointed limbs depends on accurate, robust 

and flexible motor planning and learning capabilities. 

Such superior performance is mainly due to the human 

ability to mentally plan, simulate and predict the 

consequences of one’s own actions through covert cognitive-

motor processes. Specifically, the mental simulation theory 

of action proposes that the human brain incorporates a 

simulation network that allows performing: i) self-intended 

actual movements (overtly executed), ii) self-intended mental 

or imagined movements (covert re-enactment of cognitive-

/sensori-motor performance without motor output), iii) 
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observation and imitation of others’ actual movements 

(demonstrator) [2]. The human simulation network 

incorporates a fronto-parietal circuit that is important in 

performing actual/mental reaching movements and is also a 

critical element of the human mirror neuron system (MNS) 

enabling action observation [3-5]. Thus, this neuroscientific 

theory provides a unified framework to explain the human 

capability to: i) mentally simulate/predict the sensory 

consequences of our own actions, ii) mentally manipulate 

objects/environments such as mental rotation of a workspace, 

iii) observe/imitate others’ actions [2,6-8].  

Although interesting, most previous modeling efforts 

focusing on imitation of reaching generally used robotic 

techniques (e.g., Jacobian method, statistical methods) 

without biological relevance [9]. Conversely, with various 

degrees of biological plausibility, other work proposed 

biomimetic models of reaching mainly for self-intended 

performance and/or imitation learning [10-12]. As far as we 

know, while neural models have been proposed for reaching 

movements, none of them proposed a neural architecture that 

aimed to coherently articulates i) a high cognitive level (e.g., 

prefrontal cortex that plans abstract action sequences) and ii) 

a low sensorimotor level that integrates sensory and motor 

information (e.g., fronto-parietal network) for trajectory 

planning, sensorimotor predictions and execution of 

actual/mental, observed/imitated actions. Specifically, 

regarding the sensorimotor level, previous neural models for 

imitation learning do not include learning of visuo-spatial 

transformations of the frame of reference between a 

demonstrator and an imitator [10-12]. Such a visuo-spatial 

map is critical since it allows for imitating an action 

independently of the demonstrator-imitator viewpoint. Also, 

prior neural models integrated exclusively either the imitation 

component (without mental simulation) or mental simulation 

(without imitation) mainly for navigation [10-13]. Also, 

many previous models used explicit inversions or 

optimization for inverse kinematics computations (e.g., [9]).  
 Here our long-term goal is to develop a hierarchical 

neural architecture inspired by the human biological 
simulation network in order to coherently merge high 
(cognitive) and low (sensorimotor) levels for actual/mental, 
observed/imitated dexterous arm movements. In this 
contribution we present our initial effort towards this goal. 
Specifically, the proposed neural model includes a fronto-
parietal network having three main circuits that capture 
critical sensorimotor features: learning inverse kinematics to 
perform self-intended actual/mental reaching; dealing with 
environmental perturbations; predicting sensory 
consequences of motion; and visuo-spatial remapping to 
imitate arm movements observed from various viewpoints.  
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II. CORTICAL NETWORKS MODELING 

A. Cortical Network for Sensorimotor Control of the Arm  

The first circuit allows for actual execution and computes 

the sensorimotor map (inverse model) between the goal and 

the neural command sent to the arm that can be modified by 

peripheral feedback from actual motion. The second fronto-

parietal circuit allows for mental simulation. By using a 

copy of efference of the neural drive, it predicts the 

sensorimotor consequences of arm motion (forward model) 

and may be located in the posterior parietal cortex (PPC) and 

intra-parietal lobule (IPL) [14]. The predictions are sent back 

to the motor/premotor regions (inverse model) to guide the 

computation of the neural drive, forming thus an internal 

simulation loop. Such mechanisms may be used during 

human “mental simulation” of motor action [6,7]. Here 

“mental simulation” refers to (first person) motor imagery, 

or movements executed covertly without overt muscle 

activation, to imagine action effects. Such fronto-parietal 

circuitry is employed to learn the internal model of the 

inverse kinematics transformation of a humanoid robot arm 

with seven degree of freedom (DOF; modeled using the 

Denavit–Hartenberg parameterization) in 3D by encoding 

the mapping between the spatial and joint displacement of 

the arm (Fig. 1). Based on previous computational models, 

the frontal region of this neural architecture functionally 

(i.e., no explicit modeling of the anatomical circuitry) 

reproduces the population vector coding processes 

evidenced in the motor/premotor regions which are 

implemented using hyperplane radial basis function network 

[15,16]. Specifically, our neural network learns the inverse 

kinematic mapping by integrating visual inputs (hand 

motion, target location explicitly coded in Cartesian 

coordinates); proprioception of the current joint positions; 

neural drives; predicted spatial position; the goal of the 

action; and motor error (computed by the cerebellum [1]).  

 
Figure 1:  Overview of the structure of our neural architecture. The inverse 

model (IM) and the visuo-spatial remapping (VSR) are implemented using 
neural networks and the forward model (FM) using a closed-form. X and θ: 

spatial and joint position. XT, Xa, Xp: the target, actual and predicted spatial 

arm position. ΔX: spatial displacements of the arm. The orange, dark blue 
and red areas represent the prefrontal (PFC), primary motor/premotor and 

parietal regions, respectively. VI: Visual Inputs. 

Learning consists of generating random sensorimotor 

action-perception cycles where the neural commands are 

produced to execute various arm motions through the entire 

3D workspace. During each action–perception cycle random 

joint displacements are endogenously generated from the 

current joint posture and are sent to the cortical network and 

the arm that moves, producing thus a corresponding spatial 

hand displacement. Using these spatial displacements, the 

model estimates corresponding joint displacements, 

comparing them to those randomly generated, resulting in an 

error signal used to adapt the network parameters. The 

detailed equations of this hyperplane radial basis network 

describing the computation of the inverse mapping to 

transform the Cartesian (∆X) into joint (∆θ) displacements as 

well as the learning rules can be found in [15,16]. 

B. Cortical Network for Frame of Reference Remapping 

The third fronto-parietal circuit transforms the observed 

movements from the demonstrator’s (i.e., allo-centric 

coordinates) to the imitator’s (i.e., ego-centric coordinates) 

frame of reference. The intra-parietal sulcus and superior 

parietal lobule (IPS/SPL) would implement such networks 

since those cortical areas are critical for humans to perform 

such frame of reference transformations [8,17,18] (Fig. 1). 

Then, those remapped visual inputs are conveyed to the two 

other fronto-parietal circuits allowing thus for movement 

observation and imitation [8,18]. Based on human 

neurophysiology, a radial basis function network was used to 

model this IPS/SPL region [8,17,18]. This neural network 

does not explicitly model the anatomical circuitry but the 

hypothesized functionalities. As such, this network’s model 

implements viewpoint transformations by remapping the 

frame of reference using mental rotation, placing thus the 

demonstrator in the same perspective/orientation as the 

imitator to mentally simulate and imitate observed actions. 

By using an orthogonal least squares learning algorithm, this 

neural network learned a mapping that can be mathematically 

expressed as: 



where θI, θD, TR represent the viewpoint angles (rotation 

around the z-axis) and the rotation, respectively. The angular 

displacement for mental rotation between the demonstrator 

and the imitator’s viewpoints was defined as the rotation θI- 

θD. This network was trained using 25 uniformly distributed 

spatial reference points that covered the demonstrator’s 

workspace. After training, mental rotation could be 

performed by the network that was trained separately from 

those implementing the inverse computation. Thus, as a first 

step, this fronto-parietal network is, to some extent, 

relatively consistent with the simulation network (mental 

simulation theory) that performs self-intended actual/mental 

actions [2,3], observed/imitated actions (fronto-parietal 

MNS) and mental rotation [4,5,8,17,18].  
After learning, the neural model’s performance was 

assessed on its self-intended actual and mental center-out 
reaching movements from an initial position (elbow flexed at 
90°) towards 14 targets located in the 3D workspace at 
various distances from the initial wrist position. For each 
center-out reaching movement, the robustness of this neural 
model was assessed by examining online re-planning 
capabilities in the presence of unexpected perturbations 
during actual self-intended and imitated movements. The 
perturbations were impulses resulting in a change of 20% of 
the joint angle during both transient and steady-state motion. 
For both unperturbed/perturbed motion the reaching accuracy 
was assessed by computing reaching errors for each target. 
Finally, movement imitation capabilities were also examined 

 

𝑇𝑅 𝑢, 𝑣 =  

cos 𝑢 − 𝑣 − sin 𝑢 − 𝑣 0 0
sin 𝑢 − 𝑣 cos 𝑢 − 𝑣 0 0

0 0 1 0
0 0 0 1
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during imitation of simple mirror actions using manipulation 
of small boxes (sequence of three movements). Three 
different viewpoints/orientations (i.e., demonstrator located 
in front as well as at 45° and 225° on the right and left side of 
the imitator) between the demonstrator and imitator with and 
without perturbing the imitator’s movements were used. For 
each viewpoint, the remapping and reaching errors were 
computed with and without perturbation. Also, while the 
neural model did not aim to imitate point-to-point the entire 
observed trajectory, similarities between imitated and 
observed trajectories were assessed by computing their 
correlation coefficients (only in the absence of perturbation 
since movements from the demonstrator were unperturbed).    

III. RESULTS 

After learning, the kinematic trajectories produced by our 

neural architecture were consistent overall with those 

observed during previous human experimental studies and 

the targets were accurately reached (average reaching error < 

1 cm; for all targets). The joint and hand displacements were 

smooth and sigmoid-shaped, the joint and hand velocity 

profiles were generally single-peaked and bell-shaped while 

both joint and hand acceleration overall had biphasic profiles 

(e.g., [19]; Fig. 2). Also, the fronto-parietal internal loops 

allowed the neural model to mentally simulate/predict the 

consequences of neural commands (i.e., displacement of the 

hand in the Cartesian space) during self-intended reaching 

movements without overt output (Fig. 2, second row).  

 
Figure 2:  Kinematic performance of reaching movements. Typical 

displacement, velocity and acceleration profiles are represented in the left, 
center and right column, respectively. The first and second rows represent 

the joints and hand kinematics, respectively. The black and green lines are 

the actually and mentally executed hand movements, respectively.  

Also, our cortical model was fairly robust to perturbations 

having significant amplitudes and applied during the steady-

state and transient movement period during actual self-

intended reaching movements. Specifically, in the presence 

of an impulse-type perturbation during both the transient and 

steady-state phases of movements, the joint and end-

effectors trajectories re-converged towards the target and 

reached it with an accuracy comparable (<0.5%) to 

unperturbed conditions (Fig. 3). This confirms and extends 

previous results showing that this class of model provides 

flexibility even with a highly redundant non-linear 

kinematics chain such as an upper extremity [15,16,20]. 

Finally, our model accurately imitated observed movements 

executed by a demonstrator independently of demonstrator-

imitator viewpoint (Fig. 4).  

 
Figure 3:  Kinematic assessment of the robustness of the neural model to 
unexpected perturbations. Responses of the cortical model to a brief 

perturbation applied during the transient (left column) and the steady (right 

column) states of the movement. Effects of the perturbation on the joint and 
hand displacements are shown in the first and second rows, respectively. 

The vertical dashed lines represent when the perturbation was applied. 
 

 
Figure 4:  Imitation of mirror movements (reach (A), lift (B) and move (C) 

the box). The demonstrator is placed in front as well as at 45° and 225° on 

the right and left side of the imitator. (D) Imitated trajectories with 
perturbation (see within the dotted red circle). The blue lines and red arrows 

represent the hand trajectory and the movement direction, respectively. 

The correlation coefficient between the imitated and 

observed trajectories ranged from 0.90 to 0.98, while the 

remapping and reaching errors were smaller than 3% of the 

limb length and 1.20 cm, respectively. Our neural model 

could also imitate the same action sequence executed by the 

demonstrator even when perturbed. While the imitated paths 

were fairly different due to the perturbation, reaching errors 

were similar (<0.5%) to unperturbed conditions (Fig. 4D). 

IV. DISCUSSION 

We presented a neural architecture based on human 

mental simulation theory that coherently combines self-

intended actual/mental observed/imitated movements by 

modeling three fronto-parietal circuits for sensorimotor 

processing (visuo-spatial coordinate mapping, sensorimotor 

predictions). The main finding is that our model was able to 

perform accurate, flexible and robust 3D reaching 
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movements with a seven DOFs anthropomorphic arm under 

various execution modalities (self-intended actual/mental and 

imitated movements) while reproducing joint and end-

effector movements with human-like kinematics [6,19] even 

when challenged by unexpected perturbations. This confirms 

and extends previous work suggesting that this class of neural 

model can reproduce neurophysiological and psychophysical 

data and emphasizes its capabilities when applied to upper 

limb reaching movements [15,16,20].  

Although simplified (e.g., single reaching, closed-form 

forward model), our neural architecture could mentally 

simulate the consequences of neural drives (hand 

displacements) without overt execution. This is promising 

since it could serve as a future basis for higher-level 

cognitive structures (prefrontal cortex) enabling thus more 

complex mental simulations such as covert processing of the 

workspace constraints (reachable parts, obstacles, etc.). Our 

work complements some previous studies that examined 

mental simulation in robots by focusing on arm reaching 

rather than maze navigation and by proposing a neurally 

inspired architecture that allows for self-intended mental and 

actual performance as well as imitated movement [13,21]. 
Also, our model can imitate movements from various 

demonstrator-imitator viewpoints. This is consistent with past 
studies showing the existence of viewpoint dependent and 
independent neurons in the MNS, and more generally with 
the recruitment of a simulation network to execute 
mental/actual self-intended and observed/imitated actions [2, 
22]. Although the kinematic correspondence between 
imitated and demonstrated movements was generally good, 
here the aim was not to imitate the demonstrator’s trajectory 
point-to-point per-se but rather to re-map the relevant contact 
points (e.g., box handle) that can be considered as sub-goals 
of an action or task. This philosophy is in line with the idea 
that observation/imitation is further linked to the goals of 
action than kinematics [9-12]. Also, when considering 
previous learning by demonstration or MNS modeling studies 
(e.g., [9-12]), generally our work complements those efforts 
by proposing neural circuitry integrating visuospatial 
processing for frame of reference remapping as a system that 
subserves the MNS. However, here arm movements are not 
learned by imitation but by using a combination of self-
intended actual motion via a babbling stage and performing 
visuo-spatial transformations such as mental rotation.  

Thus, future work will focus on integrating into our model 

imitation learning, and will explore its combination with 

learning using self-intended actual and mental movements 

since these may accelerate motor learning in humans and 

robots [12]. Also, a higher cognitive level including a model 

of prefrontal cortex will be developed in order to enable a bi-

directional flow of information between higher and lower 

levels as in the human prefrontal-parietal network. As a first 

step, the current neural model focused on kinematics without 

including the dynamics of effectors and object properties. 

These will be addressed by including neural elements to 

account for biomechanical and object dynamics (e.g., 

cerebellum [1]). Future work will also expand our model to 

control two arms, thus enabling bimanual performance with 

physical robotic arms in a real world environment involving 

object manipulations.  
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