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Abstract— Alzheimer’s Disease Assessment Scale-cognitive
subscale (ADAS-cog) suffers from low sensitivity in detecting
changes in Alzheimer’s disease progression in clinical trials of
disease-modifying treatments. A comprehensive psychometric
analysis of the items in ADAS-cog assessment can help in identi-
fying and improving the insensitive items. Item response theory
provides a suitable framework for investigating the ADAS-cog
items; however, it requires prior information on the underlying
latent construct for reliable analysis. In this study, we perform
an exploratory item response analysis to investigate the latent
construct underlying the relationships between the ADAS-cog
item responses. The results indicate that the underlying latent
construct of ADAS-cog is multidimensional in nature with the
latent factors measuring cognitive declines in several domains
(such as memory, praxis, and language domains).

I. INTRODUCTION

The Alzheimer’s Disease Assessment Scale-cognitive sub-
scale (ADAS-cog) is the standard assessment tool for mea-
suring Alzheimer’s progression in clinical trials of disease-
modifying treatments [1]. However, ADAS-cog has been
reported to be highly insensitive to changes in disease
progression in clinical trials [2]. This is a major reason
behind the failure of all clinical trials to date of disease-
modifying treatments of Alzheimer’s disease. The ADAS-
cog assessment consists of 11 items measuring various
cognitive abilities (such as memory and language), which
are considered to be early hallmarks of Alzheimer’s disease.
Patients are scored on each individual item, which are
added to obtain the total ADAS-cog scores. The possible
scores on ADAS-cog assessment range from 0 to 70, where
higher scores signify greater cognitive impairment. Previous
studies have indicated that individual ADAS-cog items may
have varying abilities and limitations in detecting cognitive
impairment. Therefore, a thorough psychometric analysis of
ADAS-cog is essential for its optimal application in clinical
trials.

Item response theory (IRT) is a class of latent variable
models, which provides a suitable framework for a thorough
psychometric analysis of ADAS-cog assessment items. IRT
links categorical manifest variables (such as ADAS-cog item
responses) to latent factors (such as Alzheimer’s disease
severity), which can not be directly measured. Some previous
studies have explored the application of IRT in analyzing
ADAS-cog assessment items [3]. However, these studies
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suffered from several limitations, primarily due to decisions
made during the exploratory phase of IRT modeling.

The estimation of IRT models is based on a set of fairly
strong assumptions: (i) local independence between the item
responses given a subject’s latent trait value, (ii) nature of
the item characteristic curves, and (iii) parameter invariance.
If these assumptions are not reasonably met, the validity of
IRT estimates (especially latent factors) becomes severely
compromised. All previous studies considered the underlying
latent structure in ADAS-cog assessment to be unidimen-
sional, i.e., they assumed that a single latent factor explains
the relationships between all ADAS-cog items. Prior studies
concluded that the ADAS-cog exhibited unidimensionality
based on a set of techniques (such as principal component
analysis and parallel analysis), which had been reported
previously to suffer from inconsistency in determining the
number of latent factors for common factor analysis [4].
The failure to account for multidimensionality in the latent
construct of ADAS-cog assessment can potentially translate
to local dependence between the item responses, rendering
the IRT analysis invalid. The objective of this study is to
investigate the underlying latent construct of the ADAS-cog
assessment. This basically involves establishing the required
number of latent factors, interpreting them and their loadings
on the ADAS-cog item responses.

II. METHODS

A. Item Response Theory

IRT probabilistically models a subject’s responses to an
item by specifying the manner in which the subject’s latent
factors interact with the characteristics of that item. For a
dichotomous item with 2 possible response categories, IRT
models the probability of answering it correctly as

1
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where, ¢ = 1,..., N represent the distinct participants and
j=1,...,n represent the test items in the instrument. 8; =

(0i1,--.,0in) are the m latent factors with associated item
slopes aj = (a1,...,qm) and d; is the item intercept. For
a polytomous item j with C; > 2 response categories k =
{0,...,C; —1}, the boundaries of response probabilities are

P(xij 2 0|9’ha.7vd.7) =1,
1

P ij = 1 9'1',7 'ad' = )
(x] - | aJ .7) 1+6Xp[7(a§‘01+d1)]

2476



1
1+ exp[—(aj 0; + da)] ’

P(zij > 210;,5,d5) =

P(z;; > C;|0;,05,d5) =0

where, d; = (di,... ,d(cj,l)) are the intercepts corre-
sponding to the boundaries of response probabilities. These
boundaries can be used to obtain the conditional probability
for any item response x;; = k as

P(ij = k|6, a5, dj) = P(ij > k|63, a5, dj)—

P(azij >k + 1|6, a;, dj)
B. Model Estimation
Expressing the response data x;; in an indicator form

]., if Tij = k .
0, otherwise ’ and defining W

as the set of all unknown item parameters, the conditional
likelihood for the i** response vector ; can be defined as

X, where x(x;j,k) =

n Cj—1
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IRT assumes a multivariate normal distribution g() over the
latent variables @ and integrates them out of the likelihood
function. Therefore, the marginal likelihood function of the
observed data X = (x1,...,xN) becomes

[/ / L(z:|®,0)9(6)d0

The recommended method for the estimation of IRT models
is the expectation maximization (EM) algorithm using fixed
Gauss-Hermite quadrature.

L(¥[X) =

III. EXPERIMENTS & RESULTS
A. Data

The data were obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database (http://
adni.loni.ucla.edu/). The data consisted of item-
level ADAS-cog assessment response data from 671 mild
cognitively impaired (MCI) patients and 870 Alzheimer’s
disease (AD) patients (including MCI patients that converted
to AD). While longitudinal data are available on these
patients, only a single time point data was used from each
patient in this study in order to minimize individual level
effects, i.e., minimize correlated responses to the items in
ADAS-cog assessment. The specific time point for each
patient was chosen at random to obtain a uniform distribution
of ADAS-cog assessment data across all disease severity
levels. Besides the 11 ADAS-cog items, we also include
delayed word recall, which has been shown to be important
for measuring memory impairment early in the course of
dementia. Therefore, the data contained response data from
1275 patients on 12 ADAS-cog items: word recall task
(Q1), commands (Q2), constructional praxis (Q3), delayed
word recall (Q4), naming objects and fingers (Q5), ideational

praxis (Q6), orientation (Q7), word recognition task (Q8), re-
membering test instructions (Q9), comprehension of spoken
language (Q10), word finding difficulty (Q11), and spoken
language (Q12).

B. Exploratory Item Response Analysis

We perform an exploratory item response analysis to un-
derstand the underlying latent construct of ADAS-cog items
i.e., the number of cognitive domains being measured by
ADAS-cog. The selection of an appropriate number of latent
factors is an extremely important decision in IRT modeling.
Since the response data for all ADAS-cog items are ordinal in
nature, we calculate pairwise polychoric correlations between
the items. All item pairs show significant correlations (>
0.35) except the pairs of Q2 & Q3, Q3 & Q8, Q3 & Q5
and Q3 & QI11. In general, item Q3 illustrates low pairwise
correlations with other items (Fig. 1). Several techniques are
commonly used for determining the number of latent factors
in an exploratory factor analysis:

o Kaiser’s Rule: The most common practice has been to
consider the components with eigenvalues greater than
1. The eigenvalues of the polychoric correlation matrix
are 6.30, 1.29, .88, .69, .57, .52, .42, .35, .33, .26, .23
and .16. Kaiser’s rule suggests that m = 2 latent factors
are sufficient since only two eigenvalues > 1.

o Scree Plot: Visual inspection of the scree plot can be
used to determine the appropriate number of factors
based on sharp breaks in the plot. This method also
suggests considering m = 2 latent factors.

« Parallel Analysis: Parallel analysis determines the num-
ber of factors by comparing the scree of factors of the
observed data with that of random data. For ADAS-
cog items, parallel analysis suggests m = 4 as the
appropriate number of latent factors.

As frequently reported in literature, different techniques
suggest different number of latent factors for common factor
models [4]. Therefore, as recommended by [4], we investi-
gate four solutions (S1, S2, S3, and S4) with the number of
latent factors as m = {1, 2, 3,4}. We compare between these
solutions to select the most meaningful latent construct using
the following criteria: (a) assessment of model fit, (b) the

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12
L L L L L L L L L
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Q1 Q2 Q@3 Q@ Q@5 @ Q7 Q@ Q@ Q10 Q11 Q12

Fig. 1: Polychoric correlations between ADAS-cog items.
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Fig. 2: Latent factor loadings in 1 factor model (S1), 2 factor model (S2), 3 factor model (S3), and 4 factor model (S4).

TABLE I: Comparing model fit statistics between S1, S2,
S3, and S4. The statistics considered are Log-Likelihood
(Lok-Lik), Akaike Information Criterion (AIC), sample size
corrected AIC (AICc), Bayesian Information Criterion (BIC)
and Sample-Size Adjusted BIC (SABIC) .

Statistic S1 S2 S3 S4

Log-Lik | -15361.7 | -15137.9 | -15098.6 | -14944.9
AIC 30871.5 30445.7 30387.2 30097.8
AlCc 30880.7 30458.0 30402.7 30116.5
BIC 31252.6 30883.5 30876.5 30633.5

SABIC 31017.6 30613.5 30574.8 30303.1

validity of local independence assumption, (c) the validity
of parameter invariance assumption, (d) the interpretation
of estimated latent factors, and (e) the structure of latent
factor loadings on the ADAS-cog items. The assumption of
local independence is tested using the G2 statistic [5], which
has been demonstrated to be highly sensitive in detecting
multidimensionality.

First, we assess the model fit for the four solutions S1,
S2, S3, and S4 (Table I) and perform model comparisons
between the solutions using 2 statistics based on the Log-
Likelihood statistics. In comparison with S1, S2 shows
significantly better model fit (p-value = 0, x? = 447.74 with
degrees of freedom df = 11). When S3 is compared with S2,
S3 has significantly better model fit (p-value=0, x? = 78.52
with df = 10). When S4 is compared with S3, S4 shows
significantly better fit (p-value = 0, x? = 307.39 with df =
9). While increasing the dimensionality is producing better
fitting models, model selection solely based on the model fit
statistics is misleading. The selection of appropriate model
complexity should be performed based on a combination of
criteria discussed above.

Next, we evaluate the structure and interpretations of the
factor loadings in the four solutions. Fig. 2 shows the factor
loadings on ADAS-cog items for solutions S1, S2, S3, and
S4. The unidimensional solution (S1) has a simple structure
and the latent factor can be interpreted as an indicator of
patient’s decline across all cognitive domains. However, S1
rejects the local independence hypothesis between several
item pairs (Fig. 3). Specifically, the language-related items
(Q9, Q10, Q11, Q12) illustrate local dependence with each

Q1]@2] @3 [@4[ @5 | @6 | Q7 [@s|a9e] Q10 [ Q11 | Q12
a1 $3,54 s1, 82,
$3,54
Q2 $1,82, | S1,52, S1,82, $1,52,|$1,82, | S1, 82,
$3,54| | 3,54 |S3,54 _ 3,54 | S3,54 | 3,54
a3 $1,52,[81, 52, s4 |s1,s2,
3,54 S3,54 s3, S4
Q4 _
as 1,82, s1
$3,54
Q6 v
Q7 $1, 82,
s3, 84
a8 _
Q9 _ s1_|s1,s4] st
Q10 _ s1 s1
an _ s1
Q12

Fig. 3: Matrix showing the item pairs where S1, S2, S3, and
S4 rejected the null hypothesis of local independence.

other, indicating the presence of additional latent factors.

The inclusion of a second latent factor (S2) eliminates the
local dependence between the language-related items (Q9,
Q10, Q11, and Q12). The second latent factor also shows
heavy loadings on most of these language-related items (Fig.
2) and, therefore, can be interpreted as an indicator of decline
in patient’s language abilities. However, S2 still rejects the
null hypothesis of local independence for several item pairs
(Fig. 3). In S2, items QS5, Q6, Q3, and Q2 have factor
loadings of less than 0.5. The introduction of a 3" latent
factor (S3) causes these 4 items to form a separate item
cluster, dominantly explained by the third latent factor.

An inspection of the factor loadings (Fig. 2) in S3 reveals
an interesting structure among the ADAS-cog items: 1% fac-
tor loads dominantly on all memory-related items (Q1, Q4,
Q7, Q8), 2" factor loads dominantly on all language-related
items (Q10, Q11, Q12), and the 3% factor loads dominantly
on all praxis-related items (Q2, Q3, Q6). Therefore, the 3
factors are interpreted as indicators of a patient’s decline in
the memory, language and praxis domains, respectively.

Items Q9 (remembering test instructions) is not domi-
nantly explained by any single latent factor. QO illustrates
loadings of 0.33 from the 15! factor and 0.34 from the
2nd factor, which makes sense since Q9 involves both
understanding the test instructions (language-component)
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Fig. 4: Scatterplots of the latent factors estimated in the three factor solution (S3) against the total ADAS-cog scores.

and remembering them (memory-component). Q5 (naming
objects and fingers), while being related to memory, shows
dominant loading of 0.52 from the 3" factor. This is unusual
since all other items in that domain are praxis-related. This
may indicate that Q5 measures some latent factor that is not
measured by other ADAS-cog items.

Both S3 and S4 do not reduce the local dependence
between item responses (in Fig. 3) and reject the local
independence assumption for all the same item pairs as S2.
Furthermore, S4 shows new items pairs (Ql & Q6, Q3 &
Q10, and Q9 & QI11) with local dependence, indicating an
overestimation of the number of latent factors. The overes-
timation can also be concluded from the factor loadings of
S4 (in Fig. 2), where the 3"¢ and 4*" factors load primarily
only on the Q3 and Q2 items. This indicates overestimation
since the latent factors are modeling individual items rather
than modeling the common trait underlying several items.

Based on the criteria discussed above, both the two factor
(S2) and the three factor (S3) solutions seem appropriate.
For better interpretation, we have included the scatterplots
of the estimated latent factors in S2 (in Fig. 5) and S3 (in
Fig. 4) against the total ADAS-cog scores. The latent factors
corresponding to both S2 and S3 solutions show smoothly
changing nonlinear profiles against the total ADAS-cog
scores. This is very promising since it indicates that proper
modeling of response data from ADAS-cog assessment can

ADAS-cog Total Score
30 40 50
30 40 50

10 20
10 20
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2-Factor Model: 1st Latent Factor

Fig. 5: Scatterplots of the latent factors estimated in the two
factor solution (S2) against the total ADAS-cog scores.

potentially improve its sensitivity in clinical trials of disease-
modifying treatments. As observed in Fig. 2, the latent
factors of S3 correspond to indicators of cognitive decline in
memory (Ist factor), language (2nd factor), and praxis (3rd
factor) domains, respectively. S2 on the other hand, combines
memory and praxis domains into the same latent factor (1st
factor of S2). The 2nd latent factor of S2 represents the
decline in language domain, which is same as the 2nd factor
of S3. This can also be concluded from their scatterplots,
which appear very similar except the direction of change
against the ADAS-cog scores.

IV. CONCLUSIONS

This study explored the underlying latent construct of
ADAS-cog assessment as part of the exploratory item re-
sponse analysis. The results suggest that the latent construct
is not unidimensional and requires more than one latent
factor for modeling ADAS-cog response data. However, even
after inclusion of multiple latent factors, local dependencies
are observed between several item pairs. Therefore, as future
work, we will investigate the effect of local dependencies
on parameter estimation of IRT models. We will use the
latent construct developed in this study for also analyzing
individual items’ abilities in measuring Alzheimer’s disease
progression.
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