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Abstract— Although many genetic markers are identified as
being associated with Alzheimer’s disease (AD), not much is
known about their association with the structural changes
that happen as the disease progresses. In this study, we
investigate the genetic etiology of neurodegeneration in AD
by associating genetic markers with atrophy profiles obtained
using patient data from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) cohort. The atrophy profiles were quantified
using a linear least-squares regression model over the span of
patient enrollment, and used as imaging features throughout
the analysis. A subset of the imaging features were selected
for genetic association based on their ability to discriminate
between healthy individuals and AD patients in a Support
Vector Machines (SVM) classifier. Each imaging feature was
associated with single-nucleotide polymorphisms (SNPs) using
a linear model that included age and cognitive impairment
scores as covariates to correct for normal disease progression.
After false discovery rate correction, we observed 53 significant
associations between SNPs and our imaging features, including
associations of ventricular enlargement with SNPs on estrogen
receptor 1 (ESR1) and sortilin-related VPS10 domain contain-
ing receptor 1 (SORCS1), hippocampal atrophy with SNPs on
ESR1, and cerebral atrophy with SNPs on transferrin (TF)
and amyloid beta precursor protein (APP). This study provides
important insights into genetic predictors of specific types of
neurodegeneration that could potentially be used to improve
the efficacy of treatment strategies for the disease and allow
the development of personalized treatment plans based on each
patient’s unique genetic profile.

I. INTRODUCTION

Alzheimer’s disease (AD), the most common primary neu-
rodegenerative dementia, is a genetically complex disorder
that affects an estimated 5.3 million people in the United
States [1]. As the size of the world’s elderly population
increases, AD will become an even more devastating public
health problem and a more significant economic burden.
Characterized by progressive cognitive impairment, AD re-
sults from continuous neurodegeneration in specific regions
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of the brain. Structural changes such as hippocampal atrophy,
ventricular enlargement, and cortical atrophy have been
shown to support the diagnosis of AD, and recently have
been used in diagnostic models for discriminating between
AD patients and healthy controls [2].

Since AD is caused by a complex set of genetic and neu-
rophysiological factors, it has been difficult for researchers to
understand the underlying causes of neuronal loss for specific
brain regions. The molecular basis of AD is characterized
by the formation of two main protein aggregates – senile
plaques and neurofibrillary tangles – which are involved in
progressive neuronal degeneration and death. Senile plaques
formed in AD are generated by a deposition of fibrils of the
Aβ peptide, a fragment derived from proteolytic processing
of the amyloid beta precursor protein (APP) [3]. Several
genes are involved in regulating APP processing and thus
have much potential to explain the biochemical nature of
neuronal loss observed throughout disease progression. Many
genes have been shown to be associated with AD in addition
to the well-known risk factor APOE-ε4, but were typically
identified on the basis of a binary association between the
disease and intergenic or nearby SNPs.

Although the structural dynamics of AD are extensively
studied, not much work has been done to relate structural
changes in the brain to genetic variants. Previous efforts
to associate magnetic resonance imaging-based imaging
biomarkers with genetic markers have generally focused on a
small number of genetic variables (often only the presence of
the APOE−ε4 allele) [4], whereas genome-wide association
studies (GWAS) of AD have typically only examined a small
set of imaging phenotypes [5]. Unfortunately, these studies
are only able to provide focused insights into the nature
of structural changes in AD because they do not take full
advantage of the genetic and imaging information available
in modern datasets.

Considering that substantial brain damage has already
occurred by the time AD is typically diagnosed, it is crucial
to develop diagnostic strategies that can predict progression
to AD (or a similar type of dementia) at an early, prodro-
mal stage of mild cognitive impairment. To this end, we
investigated the potential of using genetic risk factors in
developing genetically-derived models of neurodegeneration
in AD. Such models would not only improve understanding
of the biological nature of the disease, but would offer great
perspective to researchers developing treatment strategies
for AD. Moreover, such models would also be helpful in
improving the efficacy of clinical trials investigating disease-
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modifying drugs for AD.

II. DATA

A. Imaging Data

The data used in this study were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database [6]. T1-weighted MRI scans were provided for
217 healthy controls (NL), 361 patients with moderate to
severe mild cognitive impairment (MCI), and 179 patients
with moderate to severe AD at 0-, 6-, 12-, 18-, 24- and
36-month time intervals. Each of the images provided by
the ADNI had previously been preprocessed using steps
to correct for image geometry distortion and non-uniform
voxel intensity distributions. For more information on the
imaging protocols enforced by ADNI, see ADNI’s homepage
adni.loni.ucla.edu.

B. Genetic Data

All ADNI participants were genotyped with the Illumina
Human610-Quad BeadChip (Illumina, Inc., San Diego, CA)
platform, which determined the genotypes of 620,901 SNP
and CNV markers. Data processing and genotype calling
was performed by ADNI sites using BeadStudio, Illumina
GenomeStudio v2009.1. The two SNPs (rs429358, rs7412)
that define the ε2, ε3, and ε4 alleles of the apolipopro-
tein E gene (APOE) (the strongest known genetic risk
factor for AD), are not on the Human610-Quad Bead-
Chip, and thus were not considered in this study. All
genotype data was obtained from ADNI in ped format,
which allowed for data management and processing in the
open-source tool PLINK http://pngu.mgh.harvard.
edu/˜purcell/plink/ PLINK [7].

C. Patient Assessments

Along with the imaging and genetic data, clinical as-
sessments of each patient’s cognitive impairment were also
obtained from ADNI. During each visit, the Alzheimer’s
Disease Assessment Scale (ADAS-cog) and Mini-Mental
State Examination (MMSE) scores were collected to measure
disease progression throughout the study.

III. METHODS

A. Image Segmentation

Volumetric segmentation was performed using the
FreeSurfer image analysis suite http://surfer.nmr.
mgh.harvard.edu/. Briefly, the FreeSurfer pipeline in-
cludes the following: correction for motion artifacts by aver-
aging multiple volumetric T1 weighted images, a hybrid wa-
tershed/surface deformation procedure to remove non-brain
tissue, an affine transformation into Talairach space, an in-
tensity normalization procedure, segmentation of volumetric
subcortical deep gray matter and white matter, tessellation of
gray and white matter structural boundaries, and application
of intensity gradients to optimally place gray/cerebrospinal
and gray/white fluid boundaries at locations where large
shifts in intensity define transitions across tissue classes
[8]. Procedures for measuring cortical thickness have been

validated against manual measurements [9]. FreeSurfer mor-
phometric procedures have been demonstrated to show good
test-retest reliability across scanner manufacturers and across
field strengths [10].

To extract reliable volume and thickness estimates, images
were automatically processed with the longitudinal stream
[10] in FreeSurfer. Explicitly, an unbiased within-subject
image and template space is constructed using robust, in-
verse registration [10]. Several processing steps, including
Talairach transformation, atlas registration, skull stripping,
and spherical surface mapping and parcellation are then ini-
tialized with common information from each within-subject
template, which work to significantly increase reliability and
statistical power [10].

(a) Original MRI volume (b) Labelled MRI volume

Fig. 1. Sample MRI image slice and corresponding Freesurfer labeling
after longitudinal pipeline.

B. Feature Quantification

After labeling images with the longitudinal pipeline and
quantifying volumes using FreeSurfer, atrophy profiles were
quantified for each segmented volume using a linear least-
squares regression model over the span of patient enrollment.
Slopes obtained from the model were used as imaging
features throughout the analysis, representing rates of neu-
rodegeneration over time.

C. Feature Selection

To minimize the dimensionality of the imaging feature
set into a subset of highly informative quantitative traits for
association, a classification model was built to discriminate
between healthy individuals and AD patients using subsets
of imaging features. The model was iteratively tested with
increasingly large subsets of features that were selected us-
ing the commonly employed maximum-relevance minimum-
redundancy (mRMR) algorithm [11]. The mRMR algorithm
uses mutual information between two groups x and y,
I(x, y), as a measure of closeness, and tries to iteratively
choose features that are maximally informative (i.e. being
able to discriminate between diagnostic groups) and at the
same time minimally redundant with respect to the remain-
der of features in the candidate set. Mutual information
for the continuous imaging features was quantified using
kernel density estimation with a bandwidth derived from
mean integrated squared error (MISE). The relevance, D,
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and redundancy, R, criteria are respectively quantified with
respect to a patient’s binary diagnostic status (NL = 0,
AD = 1), c, and the features, xi, in the feature space, S
as follows:

D(S, c) =
1

|S|
∑
xiεS

I(xi, c)

R(S) =
1

|S|2
∑
xixjεS

I(xi, xj)

Feature optimality was quantified in the algorithm as the
difference between relevance and redundancy.

Φ = D −R

Features were iteratively removed from the candidate set un-
til a desired number of features was reached. The following
illustrates implementation of the mRMR algorithm for each
iteration (X − Sm−1 is the updated feature set after each
iteration m).

max
xjεX−Sm−1

I(xj , c)−
1

m− 1

∑
xiεSm−1

I(xj , xi)


To assess the discriminatory power of selected feature

subsets, a nonlinear support vector machine (SVM) was
developed and tested under 5-fold cross-validation using
increasing numbers of features. During each round of testing,
stratified sampling was used to split the data into feature
selection (2/3 of the data) and training/testing sets (1/3 of the
data). The mRMR algorithm was then used to select a desired
number of informative features, and the selected features
were used to train and test an SVM classifier that was devel-
oped using the C-SVC formulation and a Laplacian kernel.
A Laplacian kernel was chosen because of its performance
in identifying non-linear relationships. Mean area under the
Receiver Operating Characteristic curve (AUC) was used to
quantify performance of the feature subsets in discriminating
between healthy controls and AD patients, and an optimal
feature subset was selected for genetic association based on
converging performance.

D. SNP Selection

To minimize the effects of multiple comparisons in the
association analysis, an optimally relevant set of SNPs was
selected. A set of 66 candidate genes was selected based
on literature searches, the Online Mendelian Inheritance in
Man (OMIM) database, and the AlzGene database [12,13].
SNPs within the physical regions occupied by the candidate
genes were extracted from data downloaded from Ensembl’s
Biomart utility [14].

Several inclusion thresholds for the data were implemented
using PLINK [7]. Individuals with more than 10% missing
genotypes were removed from the analysis, along with
SNPs having a minor allele frequency below 5% or a call
rate below 90%. SNPs not in Hardy-Weinberg Equilibrium
(p<0.001) were also excluded from the analysis. These
inclusion thresholds yielded a set of 599 SNPs for the
association analysis.

E. SNP/Phenotype Associations

In order to identify SNPs associated with rates of neurode-
generation, two groups were used in the analysis: patients
showing some degree of cognitive impairment throughout
their enrollment, and healthy controls.

A multiple linear regression model was used to determine
if SNP allele frequency had any significant effects on atrophy
profiles. Letting Xi represent the allele frequency of the
examined SNP for patient i, Vi represent the set of all visits
for patient i, Yi,tj represent the ADAS-cog score for patient
i at time point tj , and Zi,tj represent the age for patient i at
time point t, the model is defined as:

y = β0+β1Xi+β2

 1

|Vi|
∑
tjεVi

Yi,tj

+β3

 1

|Vi|
∑
tjεVi

Zi,tj


The covariates in the model are the mean ADAS-cog score
(β2) and mean age (β3) of each patient throughout their
enrollment in the study. Gender was also tested as a covariate,
but did not add any power to the model (not shown). All
association testing was performed with PLINK.

IV. RESULTS
A. Classifier Performance with Selected Features

Fig. 1 details performance of the classification model
developed to select features for the association analysis.
Classification performance for the model converged at ap-
proximately 12 features, and these top 12 features were used
as quantitative phenotypic traits in the genetic-association
analysis.

Fig. 2. Performance of the SVM classifier for different subsets of features
selected by the mRMR algorithm.

B. Significant Associations

Table I shows the top 10% of the most significant as-
sociations, where all p-values shown are corrected using the
false discovery rate (FDR) control. Table II shows a summary
of significant associations (p < 0.05) by gene and imaging
feature, where emphasis is placed on the number of unique
SNPs identified for each gene.
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TABLE I
TOP 10% OF SIGNIFICANT ASSOCIATIONS BY SNP IDENTIFIER. ALL P-VALUES SHOWN ARE CORRECTED USING THE FALSE DISCOVERY RATE (FDR)

CONTROL.

Variation Gene Gene Description Imaging Feature P-Value
rs9341052 ESR1 Estrogen receptor 1 Left Lateral Ventricular Enlargement 2.513× 10−5

rs4726618 EPHA1 EPH receptor A1 Left Inferior Lateral Ventricular Enlargement 2.985× 10−4

rs9341052 ESR1 Estrogen receptor 1 Right Lateral Ventricular Enlargement 1.186× 10−3

rs17014923 BIN1 Bridging integrator 1 Third Ventricular Enlargement 2.449× 10−3

rs6584777 SORCS1 Sortilin-related VPS10 domain containing receptor 1 Left Inferior Lateral Ventricular Enlargement 4.407× 10−4

rs749008 BIN1 Bridging integrator 1 Third Ventricular Enlargement 5.694× 10−3

TABLE II
SIGNIFICANT ASSOCIATIONS BY GENE AND UNIQUE SNP COUNT.

Imaging Feature Gene Unique SNPs
ESR1 6

Lateral Ventricular Enlargement BIN1 1
LDLR 1

SORCS1 10
Inferior Lateral Ventricular Enlargement ESR1 3

APP 2
ESR1 18

Hippocampal Atrophy LRAT 3
APP 1

TF 4
Cortical Atrophy APP 2

SORCS1 2

V. DISCUSSION

We identified several SNP loci that are associated with
specific types of neurodegeneration in specific brain regions
of AD patients. Several of the SNPs found to be associated
with imaging features are in or adjacent to genes that have
been previously shown to be associated with biochemical
markers for AD [15,16]. In particular, genetic variation on
SORSC1 has been shown to alter Aβ protein processing [15],
and estrogen treatment affecting ESR1 has been shown to
modulate the risk of developing AD in women [16].

The significant associations found in this study further
stress the need for investigating genetic factors associated
with structural changes in AD. These SNP associations
suggest that genetic variation can potentially be useful to
diagnostics for identifying particular types of neurodegener-
ation in AD, and thus highlight the need to include genetic
variation in any diagnostic models for predicting the onset
of AD symptoms.

VI. FUTURE WORK

Future plans for this study include the development of
statistical models for quantifying disease severity and di-
agnosing AD at a prodromal stage of MCI using the in-
vestigated imaging and genetic features. Also, we plan to
further investigate SNPs found significant in this study on a
pathway-level basis, in order to understand more about the
biological nature of neurodegeneration in AD.
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