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Abstract— Determining shape of the eyeball is important to 

diagnose eyeball disease like myopia. In this paper, we present 

an automatic approach to precisely reconstruct three 

dimensional geometric shape of eyeball from MR Images. The 

model development pipeline involved image segmentation, 

registration, B-Spline surface fitting and subdivision surface 

fitting, neither of which required manual interaction. From the 

high resolution resultant models, geometric characteristics of 

the eyeball can be accurately quantified and analyzed. In 

addition to the eight metrics commonly used by existing studies, 

we proposed two novel metrics, Gaussian Curvature Analysis 

and Sphere Distance Deviation, to quantify the cornea shape 

and the whole eyeball surface respectively. The experiment 

results showed that the reconstructed eyeball models accurately 

represent the complex morphology of the eye. The ten metrics 

parameterize the eyeball among different subjects, which can 

potentially be used for eye disease diagnosis. 

I. INTRODUCTION 

Eyeball size and geometric features provide valuable 

information on certain type of vision disorders. For instance, 

positive correlation between the axial length of the eyeball and 

the degree of myopia has been found through quantitative 

analysis [1, 2]. Various eyeball geometric characteristics have 

been represented by different methods in both two dimensions 

(2D) [3-5] and more recently in three dimensions (3D) [6-8]. 

Previous studies have used Magnetic Resonance Imaging 

(MRI) to quantify the size and shape of eyeball. Curvatures of 

the retinal surfaces were analyzed [3, 6], and 3D eyeball 

models were built [7, 8]. Previous analysis required manual 

effort on image processing and model reconstruction, which 

were labor expensive and may introduce user dependent 

artifacts. In addition, there are many other clinically important 

questions regarding the eyeball surface features that have not 

been investigated, such as the statistical variations of the eye 

shape of a large population and the possible gaze-dependent 

eye shape changes of normal subjects. These questions 

demand accurate, robust and efficient computational 

algorithms to build 3D models from medical images. 
To address the limitation of existing approaches that 

measure the geometric characteristics of eyeball, in this paper, 
we develop a new method to reconstruct detailed 3D models 
of the eyeballs from T2-weighted MR images. Our goal is that 
this automatic modeling framework can be used on analyzing 
large datasets and generalized to data with different kinds of 
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pathologies. The generated models can help to (1) understand 
scientific questions such as whether eyeball deforms as a 
function of gaze and (2) assist clinicians for diagnosis. 
Parametric geometric representation is used, which has the 
advantage of continuity and smoothness. We propose to 
characterize eyeball shape by ten characteristic metrics. Our 
reconstruction approach and quantitative methods will be 
useful for eye disease diagnosis benefiting by the accurate 
eyeball shape representation and comprehensive description 
by the ten metrics. This paper is organized as follows. In 
Section II, we present several approaches developed to build 
3D eyeball model. In section III, we describe how to establish 
the local coordinate system of each eye ball (LCS) and 
introduce ten geometric metrics used to quantify eyeball 
shape. Results are presented in Section IV, followed by 
conclusion in Section V.     

II. METHOD 

    Our template-based eyeball shape reconstruction approach 

is outlined in Algorithm 1, the details of which  are presented 

in the following. 

Algorithm 1: Template-based Eyeball Reconstruction 

1. Segment eyeball boundaries Bc from coronal MR images 
2. Segment eyeball boundaries Bs from sagittal MR images (Section II.A.) 

3. Register edge points to using ICP variant: Bc→Bc’ (Section II.B.) 

4. Fit a B-Spline surface SBSpline to Bc∩Bs which are sparse in space 

5. Fit a subdivision surface Ssubdiv to densely sampled vertices P from 

SBSpline(Section II.C.) 

 A. Image Segmentation 

Compared to T1-weighted MRI, T2-weighted MRI 

provides excellent contrast between the eyeball and its 

surrounding tissues and hence enables automated boundary 

segmentation. Our segmentation method is described in Fig. 1. 

The original images in the sagittal view (Fig. 1(a)) and coronal 

view (Fig. 1(d)) were first preprocessed by a Gaussian filter. 

The Canny edge detection method [9] was then applied to 

extract the structure boundaries with the specified Canny 

sensitivity thresholds [0.06 0.15] (Fig. 1(b) and 1(e)). As can 

be seen from Fig. 1(b), edge detection outputted undesired 

landmarks inside the eyeball. Therefore, we used Deformable 

Snake to determine the eyeball boundaries, the points on 

which were denoted by Bs and Bc respectively, from coronal 

and sagittal MR images (Fig. 1 (c) and 1(f)).   

B. Boundary Registration 

Registration between the two boundary sets, Bs and Bc, was 

performed to correct movement of the subject between 

acquisition of the sagittal images and the coronal images.  We 

used a variant of the iterative closet point (ICP) [10] algorithm 

to find the best alignment between Bs and Bc (Fig. 1 (c)(f)). 
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Neither Bc nor Bs completely sampled the whole eyeball 

geometry because of the difficulty in accurately segmenting 

images near the poles of the eyeball. In addition, Bs and Bc are 

from a nearly spherical structure which may lead to 

ambiguous registration. To avoid such false correspondence, 

for each data point on one boundary, we only searched for its 

closest point on the other boundary that was within a 

predetermined distance. This was a fair constraint applied 

since movement of the subject between scans was expected to 

be small. A rigid transformation was computed which 

translated and rotated one set of boundary points to the other 

set. Fig. 2 shows registration results. ICP algorithm was 

applied to Bs (red) and Bc (blue). Subject movement was 

optimally eliminated which transformed the coronal 

boundaries to the new locations Bc’ (showed by the magenta 

points), providing a more accurate representation of the 

eyeball shape. 

 

C.  Eyeball Reconstruction 

A two-step surface fitting process was developed to 

realistically model the complete shape of the eyeball from the 

extracted boundaries. First, a B-Spline surface [11] was fitted 

to all the boundaries points using an approach previously 

developed [12]. The fitted B-Spline surface closely modeled 

the overall geometry of the eyeball (see Fig. 3(a)). However, 

since we used a B-Spline surface with opening endings, 

artifacts occurred at two ends. Achieving mesh uniformness 

on B-spline surfaces is important for shape analysis and is not 

straightforward. Therefore, we employed the Loop’s 

subdivision surface [13] to refine the B-Spline surface. 

Algorithm 2 describes our approach on fitting a subdivision 

surface Ssubdiv to the vertices P on the B-Spline surface. 

Algorithm 2: Subdivision Surface Fitting 

1. for each iteration do 

2.         for each vertex vi on Ssubdiv do 

3.                 find vi’ three closest vertices in P: p1, p2, and p3 
4.                 Compute vi’projection vi on the plane formed by p1, p2, and p3 

5.                 vi ← vi 

6.         end for 

7. perform mesh smoothing on Ssubdiv 

8. end for 

 

Fig. 3(b) and (c) shows the reconstructed and refined eyeball 

geometry fitted to the boundary points in Fig. 3(a). The fitting 

error of this example, defined as the mean distance from the 

boundary points to the resultant B-Spline surface, was 0.0007 

mm. The subdivision fitting error, defined as the mean 

distance from the vertices on the subdivision surface to the 

B-Spline surface, was 0.05mm. Both fitting errors were 

reasonably small, which demonstrates that the resultant 

subdivision surface closely represent the geometric shape of 

the eyeball. 

 

III. EYEBALL QUANTITATIVE AND EVALUATION 

Based on the reconstructed eyeball surfaces, for the first 

time, we apply Gaussian curvature [14] as a new metric to 

analyze shape of the cornea surface. Using Gaussian curvature 

and geometric relationship between the left and right eyeballs, 

the local coordinate system (LCS) for each eyeball can be 

created as the standardized coordinate system to better 

describe the topology features of the eyeball. With 

subject-specific LCS established, eight other metrics (surface 

area, volume, LCS axial length (Axial L), LCS horizontal 

length (Horiz L), LCS vertical length (Vert L), ellipsoid axial 

length (Axial L), ellipsoid horizontal length (Horiz L), and 

ellipsoid vertical length (Vert L) can be computed to 

parameterize and quantify the geometric features of the 

eyeball in 3D. Some of these metrics have been used in 

previous work [7, 8] and here we propose a more 

comprehensive set of features. The tenth metric is the eyeball 

Sphere Distance Deviation (SDD), measuring the deviation of 

the eyeball to the sphere that best approximate it. We will 

introduce how these metrics were calculated from the 3D 

models. 

A.  Cornea Feature Analysis using Gaussian Curvature 

In computational geometry, the Gaussian curvature of a 

point on the surface is the product of the principal curvatures 

at that point [14]. The principal curvatures are the normal 

curvatures, which measure the maximum and minimum 

 
               (a)                                   (b)                                     (c) 

Figure 3. (b) A B-Spline surface was fitted to (a) the original boundary 

points which were segmented from the MRI images in Fig. 1. (c) A 

subdivision surface was fitted to (b) the B-Spline surface. 

 
Figure 2. Boundaries of the eyeball in two scans were registered to 

correct displacement between scans. 

 

   
(a)                               (b)                             (c) 

   
(d)                              (e)                             (f) 

Figure 1. MRI image segmentation. (a)(c) Images resulted from 

application of Gaussian filter; (b)(d) Canny edge detection was applied to 

all images to extract landmarks; (e)(f) Eyeball boundaries were determined 

from Deformable Snake method. 
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blending of the surface at each point. The tangent plane of a 

point with positive Gaussian curvature intersects the surface at 

a single point, whereas the tangent plane of a point with 

negative Gaussian curvature cuts through the surface [15]. 

Therefore, the Gaussian curvature determines whether a 

surface is locally convex or locally concave. If the Gaussian 

curvature is positive (negative), then the surface at that point is 

convex (concave). The actual curvature value other than the 

sign quantitatively implies the degree of convexity (concavity) 

at any point on a surface. Fig. 4(a) illustrates the Gaussian 

curvature on the two eyeball surface of one subject. The 

Gaussian curvature is relatively high near the cornea (red) and 

low near the ciliary body (blue). This metric can be used to 

show the shape characteristics of myopia and highly myopia, 

since it has been suggested that myopia is associated with 

deformation of the cornea [8]. Such deformation might stretch 

the cornea along the axial direction which leads to more 

extrusive cornea shape accompanied by a more concave 

transition between cornea and sclera. 

  

B. Local Coordinate System (LCS) 

As stated above, forming a local coordinate system is the 

key to better parameterize features of the eyeball surface. In 

this section, we describe how the LCS can be established for 

each eyeball. First, geometric center   of the eyeball surface 

(shown as the cyan ball in Fig. 4 (b)) was calculated, and the 

global coordinate system           was initialized at o. The 

intersection point    (yellow ball) of the  -axis (magenta axis) 

and the eyeball surface was close to the center of the cornea 

because of how the MRI scan was oriented. Since the 

calculated Gaussian curvature quantifies local geometric 

characteristics of the cornea surface, we applied k-nearest 

search algorithm [16] at point    to find the region on cornea 

surface that had the highest Gaussian curvature (see small blue 

dots on eyeball surface in Fig.4 (b)). Then arithmetic mean of 

the region was computed to obtain a new center of cornea     
(blue ball). By connecting   and    , a new    axis was 

generated (blue axis in Fig. 4(b)).  

Second, we followed Singh et al.’s method [7] to create the 

initial   -axis (magenta axis) by forming a line that goes 

through the left and right eyeballs’ geometric center. Notice 

that we could not guarantee that    is perpendicular to   , so 

further adjustment was needed.  

    Finally, the cross product between    and    formed the 

new axis    (green axis). The new    axis (red axis) was 

calculated through the cross product of the    and   .  The 

resultant LCS            ) was shown in Fig. 4(b).  

C. Sphere Fitting of the Eyeball 

The geometric shape of an emmetropic eye is close to being 

spherical in 3D whereas an abnormal eye such as myopia and 

highly myopia shows deformation or distortion from a sphere 

[8]. Moriyama et al. introduced a new metric that classified the 

highly myopic eyes into four basic types on the 3D 

reconstructed eyeball surface [8]. But this classification 

procedure can only be performed based on the experienced 

professionals’ judgment to manually analyze each eye and 

their agreement on the classification results. This 

time-consuming process is subjected to human error. In 

addition, the topologic features of the eye can hardly be 

measured using the approach in [8], making it difficult to 

describe the topologic difference between the emmetropic and 

abnormal eyes. To overcome this problem, we applied the 

RANSAC algorithm [17] to fit eyeball surface by a sphere and 

measure the Sphere Distance Deviation (SSD) between the 

surface and the sphere. The main steps were outlined in 

Algorithm 3. 

Algorithm 3: Fitting a Sphere to the eyeball subdivision surface 

1. Sample the eyeball surface and output a point cloud 

2. Apply RANSAC algorithm to fit a spherical surface to the point cloud 
3. Compute the SSD between the eyeball surface to the sphere surface 

 

Fig. 5(a) illustrates the sphere fitting result that closely 

approximated the eyeball. We define the SSD   , which 

measures distance between the eyeball and the sphere, as: 

                                             (1) 

where    is a vertex on the eyeball surface,       is the 

distance from    to the fitted sphere center and   is the radius 

of the fitted sphere.        is positive if    is outside the 

sphere, and        is negative if    is inside the sphere, 

which means eyeball surface at point    intersects with the 

sphere. When         ,   is on the sphere surface. To 

better represent the SSD, the Δd(pi)  is normalized between 0 

and 1. Fig. 5(b) shows histogram of the normalized 

        and Fig. 5(c) illustrates the colored sphere that maps 

       on the fitted sphere surface. 

IV. RESULT 

Table 1 summarizes the quantitative results for twenty 

eyeballs reconstructed from MRI of ten healthy subjects, who 

were identified only by their two-letter IDs. Anonymous MRI 

data was provided by Dr. Joseph Demer at UCLA. 

According to the table, the mean Axial, Horizontal (Horiz) 

and Vertical (Vert) Length (L) in the local coordinate system 

are almost the same. The mean ± standard deviation of SSD is 

0.005(±0.05) mm, showing that the fitted sphere can closely 

approximate the eyeball surface and measure spherical 

deviation. 

 
                         (a)                                              (b) 
Figure 4. Cornea Feature Analysis using Gaussian Curvature. (a) 

Gaussian Curvature; (b) LCS of an eyeball 
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TABLE I.  EYEBALL QUANTITATIVE RESUTLS 

  Mean SD 

Surface Area (mm2) 1673.60 151.52 

Volume (mm3) 6395.31 877.62 

LCS 

Axial L 

(mm) 
23.20 1.14 

Horiz L 

(mm) 
23.33 0.93 

Vert L (mm) 23.85 1.24 

Ellipsoid 

Axial L 

(mm) 
21.94 1.06 

Horiz L 

(mm) 
23.12 0.95 

Vert L (mm) 23.56 1.28 

SSD (mm) 0.005 0.05 

V. CONCLUSION 

We have developed a computational framework for 

building subject-specific eye model from MRI, using 

parametric surface fitting. 3D eyeball geometric models from 

difference subjects can be accurately and efficiently 

reconstructed. Analysis results are consistent with previous 

studies [6-8]. Moreover, our approach provided 

comprehensive quantitative analysis of ocular anatomy and 

morphology by using the eight basic metrics. We proposed 

two more metrics, the Gaussian curvature and the sphere 

distance deviation, that have not been utilized previously but 

could improve the accuracy and efficiency of the diagnosis of 

the vision disorders. In the future, we will apply the approach 

on more datasets and aim to find the correlation between 

refractive error and shape feature, which can then be used for 

clinical diagnosis.  
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(c)  

Figure 5. Analysis of the eyeball’s deviation from a sphere. (a) 

Eyeball and fitted sphere;  (b) Histogram of computed SSD; (c) 

Color mapped SSD 
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