
  

 

Abstract— Microwave tomography has been proven to 
successfully reconstruct the dielectric profile of a human breast 
when used in breast imaging applications, thereby providing an 
alternative to other imaging modalities. However, the method 
suffers from high computational requirements which restrict 
its use in practical imaging systems. This paper presents a 
novel parallelization strategy to accelerate microwave 
tomography for reconstruction of the dielectric properties of 
the human breast. A Time Domain algorithm using this 
parallelization strategy has been validated and benchmarked 
against an optimized sequential implementation on a 
conventional high–end desktop Central Processing Unit (CPU), 
and a comparison of throughput is presented in this paper. The 
gain in computational throughput is shown to be significantly 
higher compared with the sequential implementation, ranging 
from a factor of 26 to 58, on imaging grid sizes of up to 25 cm 
square at 1mm resolution. 

I. INTRODUCTION 

ICROWAVE imaging has been extensively 
investigated in the area of medical imaging, 

particularly breast imaging for early stage cancer detection. 
As a result of this work, a number of clinical prototypes 
have been developed and recently reported in the literature 
[1, 2]. Microwave imaging is classified into two categories: 
radar-based Confocal Microwave Imaging (CMI) techniques 
e.g. [3], that construct images based on scattered energy 
from dielectric contrasts in the breast; and microwave 
tomography [4, 5, 6] that reconstructs the spatial distribution 
of dielectric properties of the breast tissues using inverse 
scattering algorithms. Several non-linear inversion 
algorithms [5, 6] have been developed to reconstruct the 
dielectric profile of a human breast in microwave 
tomography. The technique has demonstrated excellent 
ability to reconstruct the dielectric profile of tissues 
contained within the breast; however, it comes with a much 
higher computational cost than CMI. A number of studies 
have reported the use of clusters of computers connected 
using a network [5]. These systems suffer performance 
degradation due to latency and bandwidth limitations of the 
network interface; however modern GPUs with thousands of 
parallel computing cores connected directly through the 
PCIe 3.0 bus can be used to achieve much higher 
computational efficiency.  
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This paper presents a novel parallelization strategy to 
accelerate a Time-Domain Inverse Scattering (TDIS) 
algorithm for reconstruction of the dielectric properties of 
the human breast. The inversion algorithm is based on the 
nonlinear conjugate gradient method and is targeted for 
execution on a massively parallel GPU architecture. An 
efficient parallelization strategy to compute forward and 
adjoint solution of electromagnetic scattering is presented. 
The computation of Fréchet derivative, conjugate directions 
and Polak-Ribière (PR) constant are accelerated by the 
parallelization of the method. The results have been verified 
by comparing with an optimized sequential implementation 
on an Intel x64 quad-core CPU. The relative improvement in 
throughput of the parallel implementation compared with the 
sequential implementation is presented. 
The rest of the paper is organized as follows: Section II 
describes the TDIS algorithm. Section III presents 
parallelization of the numerical solution of TDIS, and 
further optimization of the parallel algorithm. Section IV 
presents the results and discussion. Conclusions and future 
work are presented in Section V.   

II. TIME DOMAIN INVERSE SCATTERING  

In the TDIS algorithm, an iterative optimization technique 
is used to minimize the sum of the squared error between 
measured electromagnetic (EM) signals from the target 
object itself, and computed EM signals from an estimated 
numerical model of the target. Consider an array of antennas 
placed around a breast with unknown dielectric properties as 
shown in Fig. 1. A set of  measurements is recorded 
where each of the M antennas transmits and the scattered 
EM signals are recorded on receiving antennas. Another set 
of  measurements is calculated from an assumed 
numerical model of the breast, using estimated values of 
dielectric properties. The cost functional for the 
minimization of the squared error between these 
measurements is formulated as: 

 (1) 

 
where  is the measured signal at receiving position 

 corresponding to a transmitted signal from antenna . 
The signal  is the forward EM scattering 

solution computed on a numerical model of the breast with 
an estimated set of relative permittivity and conductivity 
values. 
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Figure  1. Measurement setup: the breast with unknown dielectric properties 
surrounded by a circular array of M antennas 

The weighting factor  is a non-negative decreasing 
function of time.  is the measurement interval. The Fréchet 
derivative of the functional  is used to derive 
gradients with respect to relative permittivity  and 
conductivity  at each spatial position  in the 
reconstruction region: 
 

   (2) 

 

  (3) 

 

where  is the computed EM field at position  

in the reconstruction region due to transmitter , on an 
estimated model with relative permittivity  and 
conductivity . The signal  is the solution to 

the adjoint field equations, numerically calculated by reverse 
time propagation of the difference signals from all the 
receiving antennas back to transmitting antenna . 
Additional scaling factors  and  are used to 
compensate for variations in sensitivity of the dielectric 
parameters. The gradients  and  are used with 
the conjugate gradient method to find the conjugate 
direction. The complete TDIS algorithm is summarized in 
Table I. 

III. PARALLELIZATION OF TDIS 

The TDIS algorithm requires the computation of forward 
and adjoint EM scattering solution, Fréchet derivative, 
conjugate directions, and PR constant at each iteration 
(Steps 2-6 in Table I). The optimal step size  for updating 
dielectric properties is determined by a line search in the 
conjugate direction, using the Golden Section Search (GSS) 
algorithm of [7]. 

A. Parallelization  

1) Forward and Adjoint Scattering Solution 
The forward and adjoint solution to the EM scattering 
problem is computed here using the Finite Difference Time 
Domain (FDTD) method [8].  

TABLE I.  TDIS ALGORITHM 

  

 
The FDTD method exhibits intrinsic parallelism; each voxel 
in the FDTD grid is updated using values of neighboring 
voxels from the previous time step. The adjoint solution is 
computed using time reversal (TR) in the FDTD method 
(referred to as TR-FDTD in the following). In the forward 
FDTD problem, each point in a 2D grid at the  time step 
requires neighboring grid values from  time step. 
Similarly, values from the  time step are required 
to update each voxel in TR-FDTD. 
2) Computation of Gradients 
The computation of gradients  and  requires 
storage of FDTD grid data at each point in the 
reconstruction region. For each transmitting antenna 

, a stack of  2D grids is stored, ; where 
the stack height is equal to the number of time steps ( ), as 
shown in Fig. 2; X and Y are the dimensions of the FDTD 
grid used to simulate EM propagation over discretized 
reconstruction region. Each stack in Fig. 2 is mapped to a 
3D computation grid of size . The grid is 
further divided in blocks of size ; where 
parameters Width ( ), Height ( ) and Depth ( ) are 
chosen to maximize the occupancy of the available 
resources in the NVIDIA GPU devices used here. Details 
about the programming model, execution structure and 
occupancy of the GPUs can be found in [9]. The 3D 
gradient computation handler multiplies each voxel value of 
the simulated EM field data with the corresponding voxel of 
adjoint field data, resulting in a set of  stacks. Each point 
of stack 1 in the product is summed up with corresponding 
points in all other stacks. The resultant sum of products is 
integrated from  using the trapezoidal method 
structured to execute on the parallel GPU architecture. A set 
of differentiated signals is computed prior to application of 
the gradient computation procedure for permittivity. 
3) Conjugate Direction and Line Search 
The gradients are used to find the steepest directions, which 
in this case are opposite to the gradient directions. The 
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calculation of conjugate directions using the PR method 
(Step 6 in Table I) and updating the dielectric properties 
(Step 8 in Table I) involve the same mathematical 
operations; therefore, these are performed with similar 
parallel execution structure. Each iteration of the GSS 
involves evaluation of the cost function at two points, 
resulting in two FDTD simulations and the computation of 
cost according to equation (1).  The search is terminated 
according to Step 9 in Table I. 
 

 
Figure  2. Computation of the gradients of dielectric parameters; M is 
number of transmitting antennas and N is number of time steps in the FDTD 
simulation.   

B. Optimization of the Parallel Algorithm 

Moving from a conventional desktop CPU to a massively 
parallel GPU architecture for the solution of the FDTD/TR-
FDTD, gradient computation, and other arithmetic 
operations provides a significant gain in the computational 
throughput in itself. However, a number of further 
optimizations in the implementation have been introduced to 
further increase the throughput. 
1) Minimizing Data Transfer 
Modern GPUs have adequate memory to store the recorded 
data for 2D image reconstruction, allowing the data to be 
kept on the GPU to minimize the data transfer between 
computer’s main memory (RAM) and GPU memory, thus 
saving data transfer time.  
 

 
Figure  3. FDTD and TR-FDTD updates with overlapped data transfer 

2) Overlapping Data Transfer and Computation 
The -field data for each point in the reconstruction region 
are stored to pre-allocated GPU memory at each time step of 

the FDTD/TR-FDTD simulation. This GPU-to-GPU 
memory copy of size  bytes at each time step is 
overlapped with FDTD grid update operation as shown in 
Fig. 3.  
3) Coalesced Memory Access 
All the loads/stores on a GPU device are carried out through 
Level 1 (L1) cache and a single load request results in a 
memory read equal to the number of lines in the cache. If all 
of the parallel threads read from consecutive memory 
locations, the number of memory accesses can be 
minimized. 
4) Increasing L1 Cache 
The size of L1 cache can be extended on NVIDIA GPUs. 
This extended configuration of L1 cache further increases 
the throughput of the parallel model running on the GPU. 

IV. RESULTS AND DISCUSSION 

The parallel TDIS algorithm was implemented using 
NVIDIA’s CUDA library and the C programming language. 
The implementation can run on a computer system with 
NVIDIA’s CUDA-ready graphics card. To verify the 
parallel algorithm and evaluate the gain in comparison with 
a sequential CPU based implementation, a computer system 
with an Intel quad core CPU (i7-3770-3.4GHz), NVIDIA’s 
TITAN graphics card, and 16GB of RAM was used. The 
CPU-based sequential implementation of TDIS was 
optimized for minimal execution time to produce a fair 
comparison. Anatomically-realistic MRI-derived numerical 
breast phantoms from the UWCEM [10] repository have 
been used to validate the parallel reconstruction algorithm. 
The numerical model, simulation setup, and other 
parameters used in this study are the same as those used in 
[3]. The optimal block size for all 2D kernels (i.e. FDTD, 
TR-FDTD, conjugate directions, and parameter updating 
computation) was chosen to be ; the block size for 
all 3D kernels (i.e. gradient computation: multiply, integrate, 
differentiate, and sum) was chosen to be  to 
achieve maximum occupancy with minimum execution time 
per kernel. 
To compare the computational cost of the parallel 
implementation of TDIS with a sequential CPU based 
implementation, the reconstruction of two numerical breast 
phantoms from the UWCEM repository was performed and 
the average execution time is given in Table II, for several 
grid sizes. The cost function is evaluated a number of times 
during line search, and FDTD simulations are used to 
compute the forward solution. The average computation on 
each TDIS iteration during the reconstruction tests required 
14 to 20 FDTD/TR-FDTD simulations, and 1 gradient 
computation. Therefore, a large part of execution time is 
consumed by FDTD computation. The gain factor in 
tomography image reconstruction time on a grid size of 

 is 29.27 for the parallel implementation before 
the optimization steps described in section III.B; the gain 
increased to 58.66 after incorporating the additional 
optimizations. Table III provides a detailed analysis of the 
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gains provided by the additional optimizations in the parallel 
implementation. 
The first column in the Table III identifies these four 
configurations of the parallel implementation of FDTD/TR-
FDTD: 

1. No optimization (standard cache (16KB), and E-field 
data copy to CPU memory. 

2. Extended L1 cache (48KB), and E-field data copy to 
CPU memory. 

3. Extended L1 cache (48 KB) + E-field data copy to 
GPU memory. 

4. Extended L1 cache (48 KB) + E-field data copy to 
GPU memory + overlapped kernel. 

Other columns in Table III show the time taken for each 
computational operation, while the last column in Table III 
shows the gain factor relative to Configuration 1 (no 
optimization), for each of Configurations 2 to 4. 
 
TABLE III.  AVERAGE COMPUTATION AND DATA COPY TIME ON 

A 200×200 GRID FOR EACH FDTD/TR-FDTD UPDATE TIME STEP 

AGAINST DIFFERENT OPTIMIZED EXECUTION CONFIGURATIONS 

 
The values provided in Table III  are averaged over 1500 
time steps. Configuring the shared memory of the GPU as 
extended L1 cache enhanced the throughput by a factor of 
1.04. However, there was a significant increase in the 
overall performance by keeping the data inside GPU 
memory. The performance of the parallel TDIS algorithm 
has been improved by a factor of 1.8 using GPU memory for 
storage of all data and increased cache configuration. The 
overall improvement in the gain after all the optimizations is 
1.96. 

V. CONCLUSIONS AND FUTURE WORK 

A parallelization strategy for the microwave tomography of 
human breast is presented. The algorithm was implemented 
and verified on NVIDIA’s graphics card and compared with 
an optimized sequential implementation on a desktop CPU. 

The use of the parallel GPU-based implementation results in 
an increase in throughput by up to 29 on realistic grid sizes, 
and up to 56 with additional optimizations. The results 
suggest that the proposed strategy enables the use of 
computationally-demanding microwave tomography for 
practical breast screening systems. Future work will involve 
investigating a multi-GPU model to enable 3D microwave 
tomography.   
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TABLE II.  EXECUTION TIME IN SECONDS FOR SEQUENTIAL CPU-BASED IMPLEMENTATION AND PARALLEL GPU-BASED 

IMPLEMENTATION BEFORE AND AFTER OPTIMIZATION 
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