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Abstract— A new MR spectroscopic imaging method, called
SPICE (SPectroscopic Imaging by exploiting spatiospectral
CorrElation), has been recently proposed to enable high-
resolution metabolic imaging with good SNR. A key problem
within the SPICE framework is image reconstruction from a
very noisy and sparsely sampled dataset. This paper addresses
this problem by integrating the low-rank model used in SPICE
reconstruction with a non-quadratic regularization. An efficient
primal-dual based algorithm is described to solve the associated
optimization problem. The proposed method has been validated
using both simulation and phantom studies and is expected
to enhance the unprecedented capability of SPICE for high-
resolution metabolic imaging.

I. INTRODUCTION

Magnetic resonance spectroscopic imaging (MRSI) can
noninvasively obtain in vivo biochemical information and
has been recognized as a powerful tool for many clinical and
research applications [1], [2]. However, the practical utility
of MRSI has been limited by long data acquisition time,
intrinsically low signal-to-noise ratio (SNR) and poor spatial
resolution.

Significant efforts have been made to address these chal-
lenges, resulting in a large number of novel fast sequences
and advanced reconstruction schemes [2], [3], [4], [5], [6],
[7]. Recently, a new MRSI method, coined SPICE (SPec-
troscopic Imaging by exploiting spatiospectral CorrElation),
has been proposed to enable rapid high-resolution MRSI
with good SNR [8]. SPICE is characterized by the use
of a subspace model for both data acquisition and image
reconstruction. Specifically, SPICE uses the partial separa-
bility (PS) model to represent the spatiospectral function of
interest in MRSI [9], [10]. With this model, SPICE uses
a hybrid CSI-EPSI pulse sequence to sample (k, t)-space in
two datasets, one for estimating the subspace where the high-
dimensional spectroscopic signal resides in, and the other for
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obtaining the final high-resolution reconstruction with the
knowledge of the subspace.

Assuming the subspace can be accurately estimated from
the first dataset, a remaining important problem in SPICE
is the reconstruction of the spatiospectral function from
the second dataset, which has extremely low SNR and
is sparsely sampled in (k, t)-space. In the original SPICE
framework, a low-rank representation (derived from the PS
model) with a weighted-ℓ2 regularization has been used to
solve the reconstruction problem. Although the weighted-
ℓ2 regularization is advantageous in terms of computation-
al efficiency and easier characterization, it has not fully
made use of the prior information about the underlying
spatiospectral distribution. Additionally, the edge information
obtained from high-resolution anatomical images for the
weighted-ℓ2 regularization may not necessarily match the
edge distributions of the underlying spatiospectral images,
which can lead to artifacts in the reconstructions.

In this work, we explore the use of non-quadratic regular-
ization (also widely referred to as sparsity promoting penal-
ties) for improved SPICE reconstruction. Specifically, we
propose a formulation that integrates the low-rank model in
SPICE with a total variation based regularization functional.
An efficient primal-dual based algorithm is described to solve
the resulting large-scale optimization problem. Results from
carefully designed simulation and phantom studies are used
to demonstrate the improvements obtained by the proposed
method over the original weighted-ℓ2 regularization scheme.

The rest of the paper is organized as follows: Section
II describes the problem formulation and the proposed
primal-dual based algorithm in detail; Section III describes
the experimental setup and presents some representative
experiment results obtained using the proposed method,
followed by conclusion in Section IV.

II. PROPOSED METHOD

A. Spatiospectral model

The (k, t)-space data s(k, t) measured in MRSI experi-
ments can be expressed as

s(k, t) =

∫∫
ρ(r, f)e−i2π(ft+∆f0(r)t+k·r)dfdr+ ξ, (1)

where ρ(r, f) is the spatiospectral function of interest, ξ
the measurement noise (often modeled as a complex white
Gaussian noise), and ∆f0(r) the field inhomogeneity in
Hertz.
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To obtain a high-resolution spatiospectral distribution from
s(k, t), SPICE models ρ(r, f) as

ρ(r, f) =
L∑

l=1

ul(r)vl(f), (2)

where {ul(r)}Ll=1 and {vl(f)}Ll=1 are sets of spatial and
spectral basis functions, respectively, and L is the model
order (or “separation rank”). More specifically, assuming
ρ(r, f) is defined over a given grid({(rn, fm)}N,M

n,m=1), it
has been shown that the PS model in Eq. (2) implies that
the Casorati matrix C formed by ρ(rn, fm) has a low-rank
structure as [9], [10], [11], [12].

C = UrVf , (3)

where Ur ∈ CN×L and Vf ∈ CL×M are rank L matrices
containing the spatial and spectral basis vectors, respectively.

Based this model, two complementary datasets are ac-
quired in SPICE: one with limited k-space coverage but
dense temporal sampling, which captures full spectral infor-
mation (denoted as D1), and the other with extended k-space
coverage but sparsely sampled (k, t)-space (denoted as D2).
The reconstruction is then done in two steps: (i) estimating
Vf from D1 and (ii) estimating Ur and D2.

B. Proposed formulation

Given the low-rank model in Eq. (3) and a predetermined
Vf (denoted as V̂f ), we propose to estimate Ur using the
following formulation:

Ûr = argmin
Ur

1

2λ
∥d−ΩFB{UrV̂t}∥

2

2 +R(·), (4)

where V̂t is the inverse Fourier transform of V̂f , d is a vec-
tor containing the data in D2, F denotes the discrete Fourier
transform operator, B is a linear operator incorporating the
B0 field inhomogeneity effects and Ω is a sampling operator.
R(·) is the regularization term and λ is a regularization
parameter.

In particular, we consider non-quadratic regularization
functional for R(UrV̂tFt), where Ft is a temporal Fourier
transform matrix. Specifically, the widely used total variation
(TV) penalty and the total generalized variation (TGV)
penalty are considered in this paper [13], [14]. Both of
these two penalties have been demonstrated effective in
improving reconstruction quality by promoting sparsity of
the unknown image. The motivation for choosing TGV is
to reduce the staircasing artifacts typically present in TV
regularized reconstructions by utilizing higher-order deriva-
tives. TGV can also maintain the advantages of TV in
terms of edge preservation and noise removal by offering
a balance between higher-order and lower-order derivatives.
Specifically, we will choose the second-order TGV in this
paper based on the tradeoff between computation complexity
and performance shown in the exiting literatures [13]. It is
also worth noting that a similar form of TGV regularization
has been previously used in [15] but for super-resolution
reconstruction from low-resolution CSI data without prede-
termining the subspace.

C. Algorithms

In this section, we first present a primal-dual based algo-
rithm to solve Eq. (4) with second-order TGV penalty. Then
the algorithm for TV penalty will be briefly described as a
special case of the general algorithmic framework.

Based on the following definition of the discrete form of
the second-order TGV

TGVα
2 (u) = min

w
α1∥∇u−w∥1 + α0∥ε(w)∥1, (5)

where ∇u is the gradient of u, ε(w) = 1
2 (∇w + ∇wH)

represents the symmetrized gradient, α1 and α0 are the
parameters to balance the first and second-order derivatives,
we can formulate the TGV regularized reconstruction as

{Ûr, ŵ} = arg min
Ur,w∈C2MN×1

1

2λ
∥d−ΩFB{UrV̂t}∥

2

2

+ α1∥∇(UrV̂tFt)−w∥1 + α0∥ε(w)∥1. (6)

We then reformulate Eq. (6) as the following convex-concave
saddle-point problem with respect to the data fitting term

{Ûr,ŵ, p̂, q̂, ê} = arg min
Ur,w

max
p∈P,q∈Q,e

⟨∇(UrV̂tFt)−w,p⟩

+ ⟨ε(w),q⟩+ ⟨ΩFB{UrV̂t} − d, e⟩ − λ

2
∥e∥22, (7)

where e ∈ CD×1, P = {p ∈ C2NM×1|∥p∥∞ ≤ α1} and
Q = {q ∈ C3NM×1|∥q∥∞ ≤ α0}. Based on the primal-
dual algorithm [14], we can solve Eq. (7) using the following
iterative procedures:

• p(i+1) = ProjP (p
(i) + δ(∇(Ū

(i)
r V̂tFt)− w̄(i)))

• q(i+1) = ProjQ(q
(i) + δε(w̄(i)))

• e(i+1) = Proxα
2 (e

(i) + δ(ΩFB{Ū(i)
r V̂t} − d))

• Uold
r = U

(i)
r

• U
(i+1)
r = U

(i)
r + τ((div1p

(i+1))FH
t V̂H

t

− ((B∗F∗Ω∗(e(i+1)))V̂H
t ))

• Ū
(i+1)
r = 2U

(i+1)
r −Uold

r

• wold = w(i)

• w(i+1) = w(i) + τ(p(i+1) + div2q
(i+1))

• w̄(i+1) = 2w(i+1) −wold

where the Euclidean projectors ProjP and ProjQ are com-
puted as ProjP (p̄) = p̄/(max(1, |p̄|/α1)) and ProjQ(q̄) =
q̄/(max(1, |q̄|/α0)), Proxδ

2(ē) = ē/(1+δλ) is the proximal
map, and A∗ denotes the adjoint operator of A. Note that
we chose divergence operators as the adjoint operators of
the above differential operators, i.e. (div1)

∗ = −∇ and
(div2)

∗ = −ε. The concrete forms of ∇, ε, div1 and div2
can be found in [16]. We chose α0 and α1 as α0 = 2α1, and
initialized the variables to be 0 in this paper. Moreover, the
step-sizes were chosen as δ = τ = 1/

√
12 in the simulations

and δ = τ = 0.06 in the phantom studies [17].
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When R(·) is the TV penalty, Eq. (4) can be rewritten as

Ûr = argmin
Ur

1

2λ
∥d−ΩFB{UrV̂t}∥

2

2

+ ∥∇(UrV̂tFt)∥1, (8)

which can be viewed as a special case of Eq. (6) with
α1 = 1 and w = 0. Therefore, we just need to let
w̄ = 0,q = 0,w = 0 and ProjP (p̄) = p̄/(max(1, |p̄|))
in the above iterations, and the modified procedures can
then be used to solve Eq. (8). With Ûr estimated, the final
reconstruction is obtained by ÛrV̂f .

III. RESULTS AND DISCUSSION

Simulated data from a carefully designed numerical brain
MRSI phantom has been used to evaluate the performance of
the proposed method. The phantom contains metabolite spec-
tra (e.g., N-acetylaspartate (NAA), creatine (Cre), choline
(Cho), glutamate (Glu), glutamine (Gln) and myo-inositol
(Myo)) generated from quantum mechanical simulations
with additions of realistic lineshape parameters and baseline
signals. Spatial variations of the spectra were incorporated
based on reported literature concentration ratios in gray
matter, white matter and cerebrospinal fluid. Experimentally
acquired anatomical image and T ∗

2 map were also used
to increase the complexity of the spatiospectral distribution
(please refer to [10] for further details on the phantom).
(k, t)-space data with field inhomogeneity effects intro-

duced via a co-registered experimentally obtained field map
were generated using the sampling patterns described in
SPICE [8] (based on Eq. (1)). Specifically, D1 contains
8×8 CSI encodings and D2 contains 48 echoshifts averaged
6 times (a total of 352 excitations). An approximately
equivalent-time conventional CSI acquisition [1] with only
19×19 encodings and an EPSI acquisition [2] with 128×128
encodings averaged 3 times were also generated. Conjugate
phase reconstruction was applied to the CSI and EPSI data
while the proposed method was applied to the data generated
by SPICE acquisition. V̂f was estimated using the scheme
described in [8] and rank 8 was chosen for reconstruction.
Moreover, SPICE reconstruction with a weighted-ℓ2 regular-
ization (as in [8]) was also performed for comparison. Note
that we selected the regularization parameter such that differ-
ent regularization schemes yield a similar data consistency
measure. To better illustrate the performance, the relative
ℓ2 error defined as e = ∥ρ̂(r, f)− ρ(r, f)∥2 / ∥ρ(r, f)∥2
was also used to compare different reconstructions, where
ρ̂(r, f) denotes the reconstructed spatiospectral distribution
from different methods.

Figures 1 and 2 show a set of representative simulation
results. As can be seen, with approximately the same acquisi-
tion time, SPICE reconstruction (with different regularizers)
has a significantly higher resolution than CSI reconstruction,
and significantly higher SNR than EPSI reconstruction. Com-
paring SPICE reconstructions with different regularization
terms, we can observe that although they lead to similar
spectra (Fig. 2) the non-quadratic penalties provide superior

Gold Standard CSI EPSI

SPICE-weighted-l2 SPICE-TV SPICE-TGV

Fig. 1: Spatial maps of the frequency component at 347 Hz
obtained by different reconstruction methods from the simulated
data. As can be seen, the CSI reconstruction suffers from low-
resolution artifacts due to limited data, and the EPSI recon-
struction is very noisy due to fast acquisition, while the SPICE
reconstructions have both high SNR and high-resolution.

Gold Standard

Hz

CSI

Hz

EPSI

Hz

SPICE-weighted-l2

Hz

SPICE-TV

Hz

SPICE-TGV

Hz

Fig. 2: Representative spectra from different reconstructions
corresponding to the voxel identified by the red dot in Fig. 1.

quality in the spatial distributions (Fig. 1), i.e., better edge p-
reservation and less oversmoothing. Particularly, the second-
order TGV penalty offers the best reconstruction quality.
Furthermore, the relative ℓ2 errors from CSI, EPSI, SPICE
with weighted-ℓ2, SPICE with TV and SPICE with TGV
are 0.2158, 0.3709, 0.1434, 0.1399 and 0.1244, respectively,
which is consistent with the qualitative comparison.

Experimental data from a customized metabolite phantom
have also been acquired to evaluate the proposed method.
The phantom is a polymethylpentene cylindrical jar contain-
ing NaCl-doped water and three rows of vials with different
diameters. The vials were filled with metabolite solutions
(NAA, Cre, Cho and Myo) of physiologically relevant con-
centrations [1]. The data was acquired on a Siemens Trio 3T
scanner using a customized hybrid CSI-EPSI sequence. For
the SPICE acquisition, D1 contains 12 × 12 CSI encodings
and D2 contains 100×100 EPSI encodings with one temporal
interleave and 5 averages. An equivalent-time CSI acquisition
with 34× 34 encodings was also performed for comparison.
Other relevant imaging parameters are (for both CSI and
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Fig. 3: Experimental results from the metabolite phantom. Top row: spatial distributions of NAA from the low-resolution CSI, SPICE
with weighted-ℓ2 regularization, SPICE with TV regularization, and SPICE with TGV regularization. Bottom row: representative spectra
from different reconstructions corresponding to the voxel identified by the red dot in the first image. Note that all acquisitions took
approximately the same time.

SPICE): TR/TE=1000/30 ms, FOV=220 × 220 mm2, slice
thickness=10 mm, and readout bandwidth=100 kHz.

Figure 3 presents a set of experimental results from the
metabolite phantom. As expected, the low-resolution CSI
reconstruction has strong truncation artifacts although it
has high SNR, while SPICE reconstructions show both
high spatial resolution and high SNR. Comparing SPICE
reconstructions with different regularization terms, SPICE
with non-quadratic penalties demonstrate better visual
quality, especially in the spatial domain. But note that the
second-order TGV did not seem to offer better performance
than TV penalty in this case because the phantom is
piecewise constant.

IV. CONCLUSION
This paper has presented a non-quadratic regularization

formulation (specifically with TV and TGV) to improve
image reconstruction for a recently proposed subspace-based
MRSI method named SPICE. An efficient primal-dual based
algorithm has been described to solve the corresponding
optimization problem. Results from computer simulations
and phantom studies demonstrate the improvement in the
high-resolution spatiospectral reconstruction obtained by the
proposed method. We expect the proposed method to be
an integral part of SPICE, which can further enhance its
capability for high-resolution metabolic imaging.
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