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Abstract— Magnetic Resonance Angiography (MRA) is a
group of techniques based on Magnetic Resonance Imaging
(MRI) to image blood vessels. Compressed Sensing (CS) is
a mathematical framework to reconstruct MR images from
sparse data to minimize the data acquisition time. Image spar-
sity is the key in CS to reconstruct MR images. CS technique
allows reconstruction from significantly fewer k-space samples
as compared to full k-space acquisition, which results in reduced
MRI data acquisition time. The images resulting from MRA are
sparse in native representation, hence yielding themselves well
to CS. Recently our group has proposed a novel CS method
called Region of Interest Compressed Sensing (ROICS) as a
part of Region of Interest (ROI) weighted CS. This work aims
at the implementation of ROICS for the first time on MRA data
to reduce MR data acquisition time. It has been demonstrated
qualitatively and quantitatively that ROICS outperforms CS at
higher acceleration factors. ROICS technique has been applied
to 3D angiograms of the brain data acquired at 1.5T. It helps
to reduce the MRA data acquisition time and improves the
visualization of arteries. ROICS technique has been applied
on 4 brain angiogram data sets at different acceleration
factors from 2x to 10x. Reconstructed images show ROICS
technique performs better than conventional CS technique and
is quantified by the comparative Signal to Noise Ratio (SNR)
in the ROI.

I. INTRODUCTION
MRI is a biomedical imaging modality that provides im-

ages with excellent soft tissue contrast. MRI can extensively
be used to image detailed structure, function and metabolism
of the organ of interest. A significant disadvantage of MRI
is slow acquisition of data as compared to other imaging
modality such as Computed Tomography (CT) and Positron
Emission Tomography (PET). CS [1, 2] is a mathematical
framework which has made a significant impact in the field
of MRI through minimization of data acquisition time. CS
technique allows to use significantly fewer k-space samples
to reconstruction as compared to full k-space acquisition.
As sparsity increases, CS provides better reconstruction at
increased accelerations for transformed sparse domain [3]
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and it has been demonstrated on various MRI methods such
as dynamic MRI to achieve acceleration [4].

MRA is a group of techniques based on MRI to image
blood vessels used in order to evaluate them for stenosis
(abnormal narrowing), occlusion or aneurysms (vessel wall
dilatations, at risk of rupture). Angiograms are sparse in
pixel domain (spatial) and are hence suitable for CS re-
construction. Unlike a traditional angiogram, which requires
inserting a catheter into the body, MRA is a far less invasive,
less painful procedure and it does not involve exposure to
radiation. MRA is used to examine blood vessels in key areas
of the body, including the brain, neck, heart, chest, abdomen
(such as the kidneys and liver), pelvis, legs and feet, arms
and hands.

ROICS [5] is a novel technique which allows for increas-
ing sparsity required for CS reconstructions by decreasing
the number of non-zero coefficients to be estimated. ROICS
is based on the hypothesis that superior CS performance can
be obtained by limiting the CS reconstruction to a ROI of
relevance. This relaxation is justified in most applications
where the anatomy of interest such as that for MRA has
a surrounding structure and the background is typically not
important for further analysis. To achieve short acquisition
time, techniques like parallel imaging (PI) [6] and other
undersampling strategies such as keyhole imaging have been
used. These techniques are governed by the Nyquist sampling
rate and hence cannot yield acceleration beyond the Nyquist
limit due to the resulting aliasing artifacts.

II. THEORY

A. CS and ROICS

CS technique is efficiently used for acquiring and recon-
structing an image by finding a solution to an underdeter-
mined system. This gives the images sparseness or compress-
ibility in transform domain, allowing original image to be
reconstructed by relatively few measurements. ROICS limits
CS to a ROI and it can be derived from the unconstrained
convex optimization functional formula for conventional CS
which is represented by (1)

minm(‖Fu(m)− y‖2 + λ ‖ψ(m)‖1) (1)

where, m is the reconstructed image to be obtained, Fu is
the undersampled Fourier operator, y is the undersampled
k-space measured from scanner, λ is the regularization
factor, determined by methods like Tikhonov regularization
or L-curve optimization [7], ψ is the sparsifying transform
operator and ‖.‖k is the k-norm operator. The unconstrained
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CS problem in (1) can be solved with the data consistency
evaluation performed in the image domain and (1) can be
re-written as:

minm(
∥∥F−1(Fu(m)− y)

∥∥
2

+ λ ‖ψ(m)‖1) (2)

where, F−1 is the inverse Fourier transform. In the spatial
domain, data consistency term is evaluated as opposed to the
k-space and is equivalent to (1). ROICS can be derived from
(2) where, data consistency term is evaluated in the spatial
domain over a ROI. Which is described by a diagonal matrix
W of size (Ns ∗Ns), where Ns is the product of numbers of
rows and columns of the image. The use of spatial weighting
has also been used elsewhere [8] and this results in (3).

minm(
∥∥F−1(Fu(m)− y) ∗W

∥∥
2

+ λ ‖ψ(m ∗W )‖1) (3)

The ROI relaxed functional now takes the form of (3),
where W is the Ns ∗ Ns diagonal matrix which contains
a spatial weighting that can be used to specify and eval-
uate a ROI of the dimensions of the image. ROI mask is
included to enhance sparsity in the reconstruction, which
implies reduction in the number of data samples required
for reconstruction. This is achieved by relaxing the constraint
on the data consistency term and he0nce would allow for a
sparser solution as the optimization problem is more tolerant
towards error from the data consistency term. This would
hence result in better reconstructions at higher accelerations
compared to conventional CS reconstructions with identical
regularization factors and sparsity transforms. Algorithm 1
details the implementation of CS and ROICS.

Algorithm 1 Pseudo-code for CS and ROICS reconstruction
(retrospective)
Require: MRA raw data

step 1. Load raw data
step 2. Calculate Maximum Intensity Projection
step 3. Generate variable density sampling pattern
step 4. Choose undersampling factor and undersampling
mask
step 5. Choose reconstruction type
if Reconstruction type is CS then

step 6. Apply CS to all frames using (1)
go to step 8

else
step 6. Select ROI
step 7. Apply ROICS to all frames using (3)

end if
step 8. End

III. METHODS

MRA was performed on 4 human volunteers as part of
an Ethical Review Board (ERB) approved MRI study. The
acquisition consisted of a time of flight multi-slab brain
angiogram datasets acquired on 1.5T scanner using a 4
channel head and neck coil and 3D spin echo sequence with

TR/TE=25/7 ms, matrix size=256x256 with 79 slices with no
CS or PI turned on. ROICS reconstruction was performed on
the k-space data obtained from the scanner by retrospectively
undersampling acquired k-space. Maximum Intensity Projec-
tion (MIP) was determined to the final MRA image and the
required acceleration factor was used to generate probability
density function (PDF), which controlled the k-space data
in variable density sampling pattern using Monte Carlo
simulation. This simulation provides required undersampling
mask for reconstruction based on incoherence. ROI was
drawn by considering the blood vessels required for further
analysis, as shown in Fig. 1 where the yellow outline depicts
the chosen ROI.

Fig. 1. Selecting ROI on MIP MRA brain image

The ROI selected on The MIP image was used as a mask
with binary values, ones (1’s) within the ROI and zeros
(0’s) outside the ROI. This mask was used to implement the
ROICS algorithm on angiogram data acquired by applying
it on each slice as datailed in Algorithm 1. The non-
linear conjugate gradient (NCG) [9] has been well studied
and applied among various methods like subspace pursuit,
steepest descent method, etc. NCG calculates the direction
of the gradient and at each step the length of the step to
be taken in the gradient direction is given by a line-search
parameter. The stopping criteria for the iterations were 2
fold: 1) the difference of values of the tolerance parameter
between successive iterations should be negligible and 2) the
value of the tolerance parameter should be smaller than the
chosen value. Each slice was reconstructed using ROICS and
conventional CS technique.

ROICS and conventional CS technique were implemented
on the 4 brain angiogram data sets at undersampling factors
of 0.5, 0.33, 0.25, 0.2, 0.125, and 0.1 equivalent to 2x, 3x,
4x, 5x, 8x, and 10x respectively using a variable density
sampling with density compensation to compare both tech-
niques. SNR metric was calculated by computing the mean
(µ) and standard deviation (σ) within the chosen ROI using
(4).

SNR =
µ

σ
(4)

where, µ of the image was calculated by selecting only the
blood vessel region and σ was calculated from background.
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Fig. 2. Comparison of CS and ROICS at chosen acceleration factors

SNR was calculated for both proposed ROICS and conven-
tional CS technique for all data sets at chosen accelerations
to plot the average SNR graph.

IV. RESULTS AND DISCUSSION

Fig. 2 depicts the qualitative difference between the con-
ventional CS and novel ROICS on representative data set. It
can be observed in Fig. 2 that as the acceleration increases
noise in the conventional CS increases more compared to
ROICS in the selected ROI.

Fig. 3 validates the superior performance of ROICS ob-
servable at acceleration of 3x and above. SNR comparison
graph shows that at acceleration factor 2x CS performs as
well as ROICS, and as the acceleration increases ROICS
performs better than the conventional CS method. This
comparable performance of the two techniques at 2x could
be attributed to the sufficient k-space coverage in both cases

Fig. 3. SNR Comparison of CS and ROICS reconstructed image

for a data type such as the angiogram which is significantly
sparse in its native representation.

The µ SNR values of CS decrease with acceleration as
is expected but appear to increase at 10x. However, the σ
reveal that the improvement is not significant. The ROICS
SNR curve similarly has a consistent values of SNR with
the chosen values of acceleration when the σ is taken into
account. It can be observe in Fig. 3 that SNR for ROICS
is increasing with respect to acceleration. However, the σ
on these average values depicts a steady SNR trend which
is comparatively higher than conventional CS reconstruction
rather than an increase in SNR. The angiogram data typically
has a background when the MIP is considered which is not
relevant for further analysis and selecting the ROI will play a
critical role here in the reconstruction since any background
inclusion in the ROI selected will be considered as a signal
and will not result in better reconstruction.

V. CONCLUSION AND FUTURE WORK

ROICS technique was applied on angiogram data for
the first time to demonstrate its utility. Angiograms are
sparse in the image domain, hence selection of ROI in the
image domain makes data sparse for better reconstruction,
where surrounding or background regions are not relatively
important for further analysis. ROICS performs better than
conventional CS as it limits reconstruction to the ROI and
was quantified by evaluating the SNR. Current and future
work involves acquiring more angiogram data to perform
ROICS and optimizing the k-space trajectory based on ROI
shape analysis.
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