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Abstract— Compressed sensing (CS) magnetic resonance
imaging (MRI) enables the reconstruction of MRI images
with fewer samples in k-space. One requirement is that
the acquired image has a sparse representation in a known
transform domain. MR angiograms are already sparse in the
image domain. They can be further sparsified through finite-
differences. Therefore, it is a natural application for CS-
MRI. However, low-contrast vessels are likely to disappear
at high undersampling ratios, since the commonly used `1
reconstruction tends to underestimate the magnitude of the
transformed sparse coefficients. These vessels, however, are
likely to be clinically important for medical diagnosis. To avoid
the fading of low-contrast vessels, we propose a user-guided CS
MRI that is able to mitigate the reduction of vessel contrast
within a region of interest (ROI). Simulations show that these
low-contrast vessels can be well maintained via our method
which results in higher local quality compared to conventional
CS.

I. INTRODUCTION

Compressed sensing (CS) magnetic resonance imaging
(MRI) proposed by Lustig et al. [1] enables the fast recon-
struction of images by using fewer measurements in k-space
than conventional approaches. One important requirement for
the application of CS MRI is that the underlying images
should have a sparse representation in a known transform
domain. Lustig et al. presented good reconstruction results
for angiograms which have sparse representations in terms
of finite-differences. Milles et al. [2] quantitatively evaluated
the performance of CS MRI for time-of-flight (TOF) angiog-
raphy but still observed the fading of low-contrast vessels in
CS reconstructed results. For vessel diagnosis it is essential
to reliably recognize and assess pathological abnormalities,
such as narrowing (stenosis). Currently most of the vessel
analysis requires segmentation of vessels as a pre-processing
[3]. However, the fading or breaking of vessels could cause
false positives in such diagnostic procedures. Therefore, in
this paper, we propose a method aiming at the reconstruction
of specific low-contrast vessels.

The fading is caused by the fact that `1 reconstruction
employed in CS MRI shrinks the magnitude of the recon-
structed sparse coefficients. This results in the reduction
of image contrast especially at high undersampling ratios
[1]. Then the desired boundaries between the low-contrast
vessels and the background are more likely to fade or
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even vanish. To avoid these artifacts, we propose to add
weights to the `1 reconstruction based on local information.
Candes et al. [4] have already demonstrated the performance
gain via weighted `1 minimization in areas of sparse signal
recovery and image processing. Chang and Ji [5] extended
the weighted `1 minimization to reconstruct multichannel in-
vivo MRI data. Since `1 reconstruction works well for high-
contrast vessels, we weight the `1 reconstruction for specific
low-contrast vessels to maintain their boundary information.

There are several attempts to improve the quality of certain
tissues (i.e., local quality) of the imaging object, which could
be viewed as the region of interest (ROI), rather than the
global reconstruction quality. Sharma et al. [6] managed to
increase the image contrast within the ROI by only imposing
the sparsity constraint outside ROI. However, the freedom in
choosing the size of ROI is limited. For large ROIs, their
method would turn into an ill-posed least-squares problem.
Oh and Lee [7] derived the visual weight by incorporating
ROI and perceptual characteristics of the human visual
system. They masked the underlying image, which became
the reconstruction target. But this method could reduce to an
ill-posed problem if the ROI is really small such as in the
case of angiography. In this paper, there are no limitations
about the size of the ROI which could either be the entire
image or empty.

Our proposed method first defines the ROI where low-
contrast vessels are located. Then the weights are generated
based on the gradient information within ROI. The final
image is reconstructed via the weighted `1 reconstruction.
The method was evaluated on two TOF angiography scans.

II. METHODOLOGY

The pipeline of the proposed method is illustrated in Fig.
1. The partially measured k-space data and an initial image
data serve as the input. The initial image is used to define
the ROI by the users (e.g., radiologists) via semi-automatic
or interactive segmentation. These ROI contain low-contrast
vessels which cannot be well maintained via conventional
CS. The ROI does not need to be precisely defined, and
a rough estimation is enough. The initial image can either
be a zero-filling image or a conventional CS reconstructed
image. In this paper, we choose to use the conventional CS
reconstructed images with fewer iterations. The weights are
generated based on the gradient information within the ROI.
The final images are reconstructed via weights-incorporated
`1 reconstruction. In the following we will describe weights
construction and weighted CS reconstruction in more detail.
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Fig. 1. The weighted CS reconstruction pipeline

A. ROI-based weights construction

The primary information of angiograms consists of blood
vessels from which we derive clinically-related parameters
such as the diameters and length of vessels. The boundaries
are of special relevance for these parameters. They can be
estimated by calculating the gradient in the initial image
using central differences. We do not choose a smoothed
derivative filter, such as the Gaussian derivative filter, in order
to capture small scale vessel features. User-defined ROI is
applied to mask the gradients, which are normalized to the
range between 0 and 1 by the maximum gradient magnitude.
The weights are constructed by reversing the normalized
gradients:

Mi, j =
∥∥∇Ii, j

∥∥ ·ROIi, j

Wi, j = 1−
Mi, j

max(Mi, j)+ ε

Here I is the initial image, ∇ is gradient operator, ROI is the
binary mask, M is the gradient magnitude within the ROI, ε

is a very small number preventing the division by 0 and W
is the generated weights.

B. CS Reconstruction using ROI weight

Lustig et al. [1] presented the reconstruction of angiograms
using finite-differences as the sparsifying transform, which is
referred as total-variation (TV) minimization. Besides, unlike
the Fourier transform, finite-difference provides spatially
local information and has low computational complexity
compared to other sparse transforms such as wavelet. We
also employ TV minimization to reconstruct the original
angiograms. The reconstruction are performed by solving the
following optimization problem:

argmin
m
‖Fum− y‖2 +λ‖m‖TV

‖m‖TV = ∑
i, j
‖(Dm)i, j‖1

where m is the desired image, Fu is randomly-sampled
Fourier operator, y are the k-space measurements, D repre-
sents the forward differences operator and λ is the regular-
ization parameter that determines the trade-off between data
consistency and TV regularization. The `2 norm is defined
as ‖x‖2 =

(
∑i |xi|2

)1/2 while the `1 norm as ‖x‖1 = ∑i |xi|.

Fig. 2(a) shows the fully sampled 3D angiography which
will be used as the ground truth. Fig. 2(b) is the color-
coded initial image reconstructed by conventional CS. Both
are under the same rendering settings, and we can clearly
observe the breaking and fading of vessels marked in three
white polygons. These regions containing these vessels are
selected as ROI. Fig. 2(c) shows one slice of the generated
weights overlapped with CS reconstructed data. The weights
are color-coded by perceptually linear yellow-to-blue col-
ormap. Yellow represents low weights while blue the high
weights. Transparency represents the highest weights (i.e.,
1.0) for areas outside of the ROI.

The TV term penalizes intensity variations. This penaliza-
tion, however, shrinks the magnitude of the transform coeffi-
cients resulting in a reduction of image contrast. The desired
boundaries are likely to fade or even vanish. Therefore, we
propose to add weights to the TV minimization. Voxels inside
the ROI with relatively high gradients are candidates for
boundaries. The weights should be relatively low for these
voxels and vice versa. This means, within the ROI, intensity
variations for boundary candidates can be tolerated. The
proposed optimization problem is:

argmin
m
‖Fum− y‖2 +λ‖m‖wTV

‖m‖wTV = ∑
i, j

Wi, j‖(Dm)i, j‖1

where Wi, j are the derived voxel-wise weights in the range
of [0,1].

III. RESULTS

We simulated k-space data by computing the Fourier
transform of a volume (56 slices) of a high resolution 3DFT
TOF angiogram with a voxel-size of 0.23 mm × 0.23mm ×
0.35mm. We also used the fully sampled k-space data of a
volume (32 slices) of a low resolution DFT TOF angiogram
with a voxel-size of 1mm × 1mm × 1mm. From the full k-
space data, five under-sampled data sets with corresponding
sampling ratios of 10%, 15%, 20%, 25% and 30% were
reconstructed.

We compared our methods qualitatively and quantitatively
with Lustig’s method (conventional CS) [1] and the fully
sampled data set. The normalized mean squared errors
(NMSE) is used to evaluate the local performance within
the ROI.
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Fig. 2. ROI-based weights construction. (a) fully sampled 3D angiogram;
(b) CS reconstructed angiogram with sampling ratio of 10%; (c) a close-up
of the generated weights overlaid with CS reconstructed angiogram.

Maximum Intensity Projections (MIP) are frequently used
by clinical users for the visualization of vascular structures.
Often a threshold is used to eliminate noisy background
and the visualization of low intensities. For small vessels,
if their intensities are low in certain regions, this threshold
might generate breaks and discontinuities. We used the
masks resulting from several thresholds to evaluate the
reconstruction results and compared them with the ground
truth. Dice Coefficients (DC) are thus used as an extra metric
for comparison.

A. DISCUSSION

As shown in Table I, the ROI-based NMSEs for our
method are consistently lower than for conventional CS.
DCs, as a function of sampling ratios, are shown in Fig.
3 (right) at a threshold 10% of the maximum intensity
while Fig. 3 (left) shows DCs when varying the thresholds
with constant sampling ratio of 20%. The DCs derived
from our method are consistently higher especially at low
sampling ratios. With low thresholds, both show high values
because the background voxels are segmented as vessels
which are shown in Fig. 4(a). As increasing the thresholds,

more background voxels are removed. But the DC for our
method declines slower than for conventional CS which are
visually reflected in Fig. 4(b). The above evaluation results
demonstrate that our method can better maintain the intensity
connectivity of vessels.

TABLE I
ROI NMSE OF THE HIGH RESOLUTION TOF ANGIOGRAM WITH

VARIOUS SAMPLING RATIOS

10% 15% 20% 25% 30%
conventional CS 0.0471 0.0315 0.0241 0.0185 0.0140
ROI-based CS 0.0456 0.0288 0.0208 0.0156 0.0118

Fig. 3. ROI-based Dice Coefficient comparison. Left: DC variations
with different thresholds under the same sampling ratios (20%); Right: DC
variations under different sampling ratios at fixed threshold (10%).

The ROI-based NMSE for the low resolution angiogram
are shown in Table II. As shown in Fig. 5 (top), the vessels
contained in the white polygons (i.e., ROI) are marked as the
specific reconstruction target. From the close-up views in Fig.
5 (middle and bottom), it can be observed that our method
can maintain the intensity connectivity better in most areas.
The reason why we do not include DC in this experiment is
that even for the fully sampled data set, the vessels within the
ROI can not be segmented merely based on the thresholds.

TABLE II
ROI NMSE OF THE LOW RESOLUTION TOF ANGIOGRAM WITH

VARIOUS SAMPLING RATIOS

10% 15% 20% 25% 30%
conventional CS 0.1628 0.0870 0.0506 0.0366 0.0280
ROI-based CS 0.0999 0.0562 0.0362 0.0256 0.0207

The difference of overall NMSE between our method and
the conventional CS are small. This is due the fact that the
vessels within ROI normally occupy a relatively small part
of total voxels.

The method we propose does not suffer from the limita-
tions in ROI selection as in [6]. If the selected ROI is empty,
the optimization function converges with conventional CS.
If the selected ROI is the entire image, our reconstruction
function just tolerates the intensity variations for voxels with
globally large gradient magnitudes rather than reduce to
an ill-posed problem. Our method is sensitive to the ROI
definition. However, as long as within the region there are
no high differences in the gradient magnitude the method will
work. Furthermore, our method is not suitable for enhancing
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(a) MIP renderings with threshold at 6% the maximum intensity

(b) MIP renderings with threshold at 10% the maximum intensity

Fig. 4. MIP renderings of the original high-resolution angiogram (left),
the conventional CS (middle), our method (right). Sampling ratio is 20%.

very weak vessels because the derived gradient magnitude
is extremely small which will lead to high weights for the
subsequent reconstruction.

IV. CONCLUSIONS AND FUTURE WORK

CS MRI is able to reconstruct the angiograms from an
incompletely sampled k-space. However, low-contrast ves-
sels are likely to fade at high undersampling ratios. To
mitigate this, we proposed a weighted CS reconstruction
which considers user-annotated ROIs containing low-contrast
vessels. Low weights correspond to high gradients which
means that intensity variations can be tolerated at vessel
boundaries. Preliminary results show that our method using
both simulated and clinically acquired k-space data can main-
tain the intensity connectivity for ROI-based low-contrast
vessels better than the conventional CS.

However, there are still several topics for future work.
We construct the weights from the initial image and keep
it constant for the reconstruction. Weights can be adaptively
constructed and tuned after each reconstruction iteration.
Furthermore, a more extensive evaluation with more data
sets and clinically relevant parameters is necessary to show
the real applicability of the proposed method in clinic.
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