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Abstract— An effective way to improve the data acquisition
speed of magnetic resonance imaging (MRI) is using under-
sampled k-space data, and dictionary learning method can be
used to maintain the reconstruction quality. Three-dimensional
dictionary trains the atoms in dictionary in the form of blocks,
which can utilize the spatial correlation among slices. Dual-
dictionary learning method includes a low-resolution dictionary
and a high-resolution dictionary, for sparse coding and image
updating respectively. However, the amount of data is huge for
three-dimensional reconstruction, especially when the number
of slices is large. Thus, the procedure is time-consuming.

In this paper, we first utilize the NVIDIA Corporation’s
compute unified device architecture (CUDA) programming
model to design the parallel algorithms on graphics processing
unit (GPU) to accelerate the reconstruction procedure. The
main optimizations operate in the dictionary learning algorithm
and the image updating part, such as the orthogonal matching
pursuit (OMP) algorithm and the k-singular value decomposi-
tion (K-SVD) algorithm. Then we develop another version of
CUDA code with algorithmic optimization. Experimental results
show that more than 324 times of speedup is achieved compared
with the CPU-only codes when the number of MRI slices is 24.

I. INTRODUCTION
The magnetic resonance imaging (MRI) modality is safe

and can achieve tomography in any direction with high soft
tissue contrast. Therefore, it has been clinically widely used.
However, the sampling time of traditional MRI is long, which
may lead to discomfort of patients and motion artifacts in the
reconstruction images, limiting its use in many hot and focus
areas, such as cardiac imaging.

Fortunately, performing reconstruction from undersampled
k-space data can improve the data acquisition speed by
sampling less data. The compressed sensing (CS) theory [1]-
[2] suggests that a sparse signal can be reconstructed from
its sparse representation under certain conditions. There-
fore, it is possible for us to perform reconstruction of
MRI images using undersampling k-space data. Dictionary
learning method [3]-[5] is a very effective way to establish
adaptive dictionaries with good sparsity, then the dictionary
can be used to train the sparse representation and reconstruct
the images. In our work, we utilize the k-singular value
decomposition (K-SVD) [6] and orthogonal matching pursuit
(OMP) [7]-[8] algorithm to train dictionaries and obtain the
sparse representation.
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Ying Song et al. [3] proposed a new algorithm for the
reconstruction of undersampled k-space data. They used
three-dimensional dictionary and performed reconstruction
of multi-slice MRI images. In their method, data is divided
into blocks, and the spatial correlation among slices can
be used when training dictionaries, as well as updating the
resulting images. Furthermore, they use a new dictionary
learning scheme – dual-dictionary learning, with a low-
resolution dictionary Dlow and a high-resolution dictionary
Dhigh, for sparse coding and image updating respectively.
Their work indicates that dual-dictionary scheme is better
than the single dictionary scheme.

However, when it comes to three-dimensional reconstruc-
tion, the amount of data is huge and will increase with the
number of slices increasing. In addition, K-SVD and OMP
are both iterative algorithm, and they require more time
for execution, and the situation will get even worse when
the amount of data becoming larger. Therefore, accelerating
the reconstruction procedure is needed. We first design the
parallel algorithm on graphics processing unit (GPU) directly
under the scheme of compute unified device architecture
(CUDA) [9] (we call this version of CUDA code as ”original
CUDA”), utilizing GPU’s strong computing power and high
performance in parallel computing. Then we carry out algo-
rithmic optimization proposed in Reference [10], and on this
basis, we develop another version of CUDA code (we call
it CUDA after Algorithmic Optimization, i.e. CUDA-AO).
In both of the two versions of CUDA code, we emphasize
on the optimization of the K-SVD and OMP algorithm, and
implement their parallel version codes on GPU.

CUDA is a programming model and a general purpose
parallel computing platform introduced by the NVIDIA
Corporation. It allows the programmers to easily develop
programs on GPU without much knowledge of the GPU
internal structure and the parallelization mechanism of com-
puting in threads. Due to its powerful computing capability,
CUDA is being increasingly used in the scientific computing
areas. In our work, the CUDA runtime API and the CUDA
Basic Linear Algebra Subroutines (CUBLAS) library [11],
which is a GPU-accelerated version of the complete standard
BLAS library, are used to develop the CUDA programs.

II. THE ALGORITHM SCHEME
A. Overview of the algorithm

The formulation of the multi-slice MRI reconstruction
[3] is shown in (1), where X is the unknown images to
be reconstructed, Ri,j,t is the extraction operator, indexed
by the location of the lowest top-left point, (i, j, t), in
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Fig. 1: (a) Three-dimensional MRI series volume. The multi-
slice MRI images are concerned. (b) The multi-slice MRI
images are divided into blocks. The lowest top-left point of
a block is shown.

the image block, which is shown in Fig.1. αi,j,t is the
sparse representation of X under the dictionary D, Fu is
the undersampling Fourier matrix, y is the undersampled k-
space measurements, ρ is the sparsity level, and ν is defined
by ν = λ/σ, where λ is a positive constant and σ is the
standard deviation of the noise.

min
X,αi,j,t

∑

i,j,t

‖Ri,j,tX−Dαi,j,t ‖22 + ν ‖FuX− y ‖22

s.t. ‖αi,j,t ‖22 6 ρ ∀i, j, t
(1)

The reconstruction scheme consists of three steps:
• (1) Dictionary learning step: In this step, the K-SVD

algorithm is used to train the two dictionaries Dlow and
Dhigh, then they can be used in the next step.

• (2) Sparse coding step: In this step, the image X is
assumed to be fixed, and the dictionary Dlow is used to
get the sparse representation α.

• (3) Image updating step: The sparse representation at-
tained in the last step and the high-resolution dictionary
Dhigh are used to reconstruction the final images.

The execution time of the OMP and K-SVD algorithm
accounts for the most largest proportion of the total time
consumed of the reconstruction process, thus we focus on
OMP and K-SVD and develop their parallel algorithms
and codes on CUDA to accelerate the whole reconstruction
process.

B. Implementing OMP on CUDA

OMP is a greedy algorithm and at each step it chooses
an atom from the dictionary, making sure that the atom is
the most closest to the residual signal. Then the signal is
orthogonally projected to the selected atoms to achieve the
approximation. The detail of OMP is shown in Algorithm 1.
X is the input signal matrix, and its columns correspond
to the blocks shown in Fig.1. The data in one block is
rearranged to form a column vector and then stored in one
column of X. Each column in X needs a cycle of loop.

The OMP algorithm uses iterative mechanism, requiring
very large amount of computation. OMP is an important part
in the dictionary learning step [6] and the sparse coding
step [3], [12]. Reduction of the time consuming by OMP is
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min
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(1)

The reconstruction scheme consists of three steps:
• (1) Dictionary learning step: In this step, the K-SVD

algorithm is used to train the two dictionaries Dlow and
Dhigh, then they can be used in the next step.

• (2) Sparse coding step: In this step, the image X is
assumed to be fixed, and the dictionary Dlow is used to
get the sparse representation α.

• (3) Image updating step: The sparse representation at-
tained in the last step and the high-resolution dictionary
Dhigh are used to reconstruction the final images.

The execution time of the OMP and K-SVD algorithm
accounts for the most largest proportion of the total time
consumed of the reconstruction process, thus we focus on
OMP and K-SVD and develop their parallel algorithms
and codes on CUDA to accelerate the whole reconstruction
process.

B. Implementing OMP on CUDA

OMP is a greedy algorithm and at each step it chooses
an atom from the dictionary, making sure that the atom is
the most closest to the residual signal. Then the signal is
orthogonally projected to the selected atoms to achieve the
approximation. The detail of OMP is shown in Algorithm 1.

The OMP algorithm uses iterative mechanism, requiring
very large amount of computation. OMP is an important part
in the dictionary learning step [6] and the sparse coding
step [3], [12]. Reduction of the time consuming of OMP is
significant. In the original CUDA method, we just parallelize
the codes inside the iteration in Algorithm 1. Rubinstein et al
[10] introduced a method that using Cholesky factorization
to avoid the computation of the pseudo-inversion of matrices
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the image block, which is shown in Fig.1. αi,j,t is the
sparse representation of x under the dictionary D, Fu is
the undersampling Fourier matrix, y is the undersampled k-
space measurements, ρ is the sparsity level, and ν is defined
by ν = λ/σ, where λ is a positive constant and σ is the
standard deviation of the noise.

min
x,αi,j,t

∑

i,j,t

‖Ri,j,tx−Dαi,j,t ‖22 + ν ‖Fux− y ‖22

s.t. ‖αi,j,t ‖22 6 ρ ∀i, j, t
(1)

The reconstruction scheme consists of three steps:
• (1) Dictionary learning step: In this step, the K-SVD

algorithm is used to train the two dictionaries Dlow and
Dhigh, then they can be used in the next step.

• (2) Sparse coding step: In this step, the image x is
assumed to be fixed, and the dictionary Dlow is used to
get the sparse representation α.

• (3) Image updating step: The sparse representation at-
tained in the last step and the high-resolution dictionary
Dhigh are used to reconstruction the final images.

The time used by OMP and K-SVD algorithm accounts
for the most largest proportion of the total time consumed
of the reconstruction process, and we focus on OMP and
K-SVD and develop their parallel algorithms and codes on
CUDA to accelerate the whole reconstruction process.

B. Implementing OMP on CUDA

OMP is a greedy algorithm and at each step it chooses
an atom from the dictionary, making sure that the atom is
the most closest to the residual signal. Then the signal is
orthogonally projected to the selected atoms to achieve the
approximation. The detail of OMP is shown in Algorithm 1.

The OMP algorithm uses iterative mechanism, requiring
very large amount of computation. OMP is an important part
in the dictionary learning step [6] and the sparse coding
step [3], [12]. Reduction of the time consuming of OMP is
significant. In the original CUDA method, we just parallelize
the parts inside the iteration in Algorithm 1. Rubinstein et al
[10] introduced a method that using Cholesky factorization
to avoid the computation of the pseudo-inversion of matrices
in the OMP algorithm, and OMP can be accelerated in this

Algorithm 1 Orthogonal Matching Pursuit (OMP)

Input:
D: dictionary. ρ: sparse level. α: sparse representation. 
X: signal. r: residual signal. Λ: selected atoms. dj : the jth 

column of D.
Main Procedure:

For each column in x, repeat the following operations
until the sparse level is reached:

1: j ← arg max
i
|dT

i r |
2: Λ← Λ ∪ dj

3: α← arg min
α ‖X − Λα ‖22

4: r = X − ΛαI 
Output: α

way. We use this method in our codes and transfer it to
CUDA. The modified OMP algorithm is more suitable for
implementation on CUDA.

In CUDA, we assign tens of thousands of threads to com-
pute the main procedure in Algorithm 1, thus the iteration
can be eliminated, and all the operations for each column
of the signal can run simultaneously. The OMP algorithm in
the original CUDA method is shown in Algorithm 2.

Algorithm 2 OMP implemented on CUDA

Input:
Assigning space for all the intermediate variables on the
GPU memory and initialized them. Allocating proper
size of threads, blocks, and shared memory in CUDA.

Main Procedure:
In the kernel function defined using the global dec-
laration specifier, the pseudo-codes in C++ is:

1: int tid = blockDim.x * blockIdx.x + threadIdx.x;
2: if tid is less than the number of columns of the signal

then
3: Compute the increasing factor for each intermediate

variable.
4: For the tidth column of the signal, do the same

operations shown in Algorithm 1 from line 1 to 4.
5: end if

Output: α

It should be noticed that many intermediate variables
should be allocated space and initialized on the GPU memory
at the beginning. Since all the threads are executed concur-
rently and the intermediate variable should be assigned for
each thread, we ought to compute the increasing factor for
their address pointers in the program as shown in Algorithm
2. The main part of the kernel function for CUDA is
mostly the same as that in Algorithm 1. However, all the
function called should be modified properly and defined by
the device declaration specifier, which, like global , is
part of the C extensions of CUDA [9].
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CUDA method, we parallelize the parts in step 3 of Fig. 4,
and use the CUDA version OMP algorithm shown in Fig.
3. We also use the method of Rubinstein et al [10] to first
accelerate the K-SVD algorithmically, and then develop the
CUDA version of K-SVD for the CUDA-AO method.

SVD updates only one column of the dictionary at each
iteration, and involves only the signals that use the current
atom. The detail of K-SVD is shown in Fig. 4. In the original
CUDA method, we parallelize the parts in step 3 of Fig. 4,
and use the CUDA version OMP algorithm shown in Fig.
3. We also use the method of Rubinstein et al [10] to first
accelerate the K-SVD algorithmically, and then develop the
CUDA version of K-SVD for the CUDA-AO method.

Algorithm 3 k-singular value decomposition (K-SVD)
Input:

D: normalized dictionary obtained from the training sets.
α: sparse representation. X: signal.
xj : the jth row in X.

Main Procedure:
Firstly, do the sparse coding step:
Using the OMP algorithm to get the sparse representa-
tion α.
Secondly, do the dictionary updating step:

1: for the kth column of the dictionary do
2: if the sparse level is not reached then
3: Find the indices of the signals whose representa-

tions use dk.
4: Compute the overall representation err matrix:

Ek = x− ∑
j 6=k

djx
j .

5: Update the current column of the dictionary:
dk = Ek/ ‖Ek‖2.

6: Update the corresponding row in α with ET
k dk.

7: end if
8: end for

Output: α

When implementing the K-SVD algorithm on CUDA,
the sparse coding step can utilize the accelerated OMP
program mentioned in Algorithm 2. However, since the
current iteration should use the results of the last iteration
in the dictionary updating step, the algorithm cannot be
parallelized. But we can still accelerate it by implementing
each of the operations on CUDA. We also use the CUBLAS
library to accelerate the execution of some linear algebra
operations.

D. Reconstructing images using CUDA

When both the low-resolution dictionary and the high-
resolution dictionary have been trained, they can be used to
achieve the final image. We employ the method mentioned
in [3] and rewrite the code using CUDA (displayed in Fig.
5). Firstly, we use the low-resolution dictionary to obtain the
sparse representation, where the OMP algorithm is used. It
is implemented on CUDA as mentioned in the above section
B.

When updating the reconstruction result in step 2 of Fig.
5, experiments show that this procedure consumes very little
time, which is less than 0.01 seconds. Therefore, CUDA
has no advantage in this step, and we just leave the codes
unchanged.

III. RESULTS

We will present the performance and the acceleration
effect of the original CUDA method and the CUDA-AO
method. Furthermore, to verify that the two versions of
CUDA codes have similar effect on the quality of the result
images, we compare the peak signal-to-noise ratio (PSNR)
and the construction error of the results achieved by the
original CUDA method and the CUDA-AO method. The
formulas we use are shown in equation (1) and (2), where
MSE is the mean squared error, and MAXI is the maximum
possible pixel value of the image, whose value is 255 because
the pixels of the original images are represented using 8 bits.

PSNR = 10 · log10

(
MAX2

I

MSE

)
(2)

error =
‖result− origin‖22
‖origin‖22

(3)

We use the CUDA 5.5 to develop our programs on GPU,
and all the computations are performed with an Intel Xeon
E5640 CPU and an NVIDIA GeForce GTX 780 TI GPU,
under a Windows Server 2008 operating system. All the
codes are written with C++ and CUDA C language.

We test the acceleration effect with different number of
slices of the MRI images. Table I shows the results of original
CPU code that has no optimization and that of the original
CUDA method and the CUDA-AO method.

From Table I, we can see that the reconstruction procedure
of MRI can get more than 20 times of speedup using the
original CUDA method, and the acceleration effect is even
better when using CUDA-AO method, which holds about
324 times of speedup when the number of slices is 24. It is
sure that better effect of acceleration can be obtained when
the number of slices becomes larger.

Fig.2 shows the reconstruction results for a 32-slice MRI
image, and it includes the results of the original CUDA
method and that of CUDA-AO method. Meanwhile, the
corresponding difference images with the original images are
shown. The size of each image is 256256. From Fig. 6, we
can conclude that the reconstruction results of original CU-
DA and CUDA-AO are nearly the same. The reconstruction
results and the corresponding difference images are similar.

Fig. 7 shows the PSNR and reconstruction error compared
with the original images computed according formula (1) and
(2). The difference between the PSNR of the original CUDA
method and that of the CUDA-AO method is within 2dB, and
the difference of reconstruction error changes in an interval
less than 0.005, both of which indicate that the CUDA-AO
version code has almost the same reconstruction results with
the original CUDA version code.

IV. CONCLUSIONS

In this work, we accelerate the reconstruction of MRI by
three-dimensional dual-dictionary learning using CUDA. The
parallel algorithm on GPU and the acceleration performance
are investigated. In addition, we develop two version of
CUDA codes: (1) the original CUDA method just directly
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and all the computations are performed with an Intel Xeon
E5640 CPU and an NVIDIA GeForce GTX 780 TI GPU,
under a Windows Server 2008 operating system. All the
codes are written with C++ and CUDA C language.

We test the acceleration effect with different number of
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CPU code that has no optimization and that of the original
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of MRI can get more than 20 times of speedup using the
original CUDA method, and the acceleration effect is even
better when using CUDA-AO method, which holds about
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sure that better effect of acceleration can be obtained when
the number of slices becomes larger.
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image, and it includes the results of the original CUDA
method and that of CUDA-AO method. Meanwhile, the
corresponding difference images with the original images are
shown. The size of each image is 256256. From Fig. 6, we

It should be noticed that many intermediate variables
should be allocated space and initialized on the GPU memory
at the beginning. Since all the threads are executed concur-
rently and the intermediate variable should be assigned for
each thread, we ought to compute the increasing factor for
their address pointers in the codes as shown in Algorithm 2.
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The main part of the kernel function for CUDA is mostly the
same as that in Algorithm 1. However, all the function called
should be modified properly and defined by the device
declaration specifier, which, like global , is part of the C
extensions of CUDA [9].

C. Implementing K-SVD on CUDA

The K-SVD algorithm is utilized to train both the low-
resolution dictionary and the high-resolution dictionary. K-
SVD updates only one column of the dictionary at each
iteration, and involves only the signals that use the current
atom. The detail of K-SVD is shown in Algorithm 3. In
the original CUDA method, we parallelize the codes, and
use the CUDA version OMP algorithm shown in Algorithm
2. We also use the method of Rubinstein et al [10] to first
accelerate the K-SVD algorithmically, and then develop the
CUDA version K-SVD for the CUDA-AO method.

The main part of the kernel function for CUDA is mostly the
same as that in Algorithm 1. However, all the function called
should be modified properly and defined by the device
declaration specifier, which, like global , is part of the C
extensions of CUDA [9].

C. Implementing K-SVD on CUDA

The K-SVD algorithm is utilized to train both the low-
resolution dictionary and the high-resolution dictionary. K-
SVD updates only one column of the dictionary at each
iteration, and involves only the signals that use the current
atom. The detail of K-SVD is shown in Algorithm 3. In
the original CUDA method, we parallelize the codes, and
use the CUDA version OMP algorithm shown in Algorithm
2. We also use the method of Rubinstein et al [10] to first
accelerate the K-SVD algorithmically, and then develop the
CUDA version K-SVD for the CUDA-AO method.

Algorithm 3 k-singular value decomposition (K-SVD)

Input:

D: normalized dictionary obtained from the training sets.

α: sparse representation. X: signal.

x
j : the jth row in X.

Main Procedure:

Firstly, do the sparse coding step:

Using the OMP algorithm to get the sparse representa-

tion α.

Secondly, do the dictionary updating step:

1: for the kth column of the dictionary do

2: if the sparse level is not reached then

3: Find the indices of the signals whose representa-

tions use dk.

4: Compute the overall representation err matrix:

Ek = x−
∑

j 6=k

djx
j .

5: Update the current column of the dictionary:

dk = Ek/ ‖Ek‖2.

6: Update the corresponding row in α with E
T

k dk.

7: end if

8: end for

Output: α

When implementing the K-SVD algorithm on CUDA, the
sparse coding step can utilize the accelerated OMP algorithm
in Algorithm 2. However, since the current loop should use
the results of the last loop in the dictionary updating step, the
algorithm cannot be parallelized. But we can still accelerate
it by parallelizing each of the operations on CUDA. We
also use the CUBLAS library to accelerate the execution of
some linear algebra operations. The experiments show very
effective results to deal with K-SVD in this way.

D. Reconstructing images using CUDA

As mentioned in Section II-A, the reconstruction scheme
consists of three steps. When both the low-resolution dic-
tionary and the high-resolution dictionary have been trained,
they can be used to achieve the final image. We employ the

Algorithm 3 k-singular value decomposition (K-SVD)
Input:

D: normalized dictionary obtained from the training sets.
α: sparse representation. X: signal.
xj : the jth row of X. dk: the kth column of D.

Main Procedure:
Firstly, do the sparse coding step:
Using the OMP algorithm to get the sparse representa-
tion α.
Secondly, do the dictionary updating step:

1: for the kth column of the dictionary do
2: if the sparse level is not reached then
3: Find the indices of the signals whose representa-

tions use dk.
4: Compute the overall representation err matrix:

Ek = x − ∑
j ̸=k

djx
j .

5: Update the current column of the dictionary:
dk = Ek/ ∥Ek∥2.

6: Update the corresponding row in α with ET
k dk.

7: end if
8: end for

Output: D

method proposed in [3] and rewrite the codes using CUDA.
Firstly, we use the low-resolution dictionary to obtain the
sparse representation, where the OMP algorithm is used. The
OMP is implemented on CUDA as mentioned in the above
Section II-B.

When updating the reconstruction results, experiments
show that this procedure consumes very little time, which is
less than 0.01 seconds. Therefore, CUDA has no advantage
in this step, and we just leave the codes unchanged.

III. RESULTS

We present the performance and the acceleration effects
of the original CUDA method and the CUDA-AO method.
Furthermore, to verify that the two versions of CUDA codes
have similar quality of the result images, we compare the
peak signal-to-noise ratio (PSNR) and the reconstruction
error of the results. The formulas we use are shown in (2)
and (3), where MSE is the mean squared error, and MAXI

is the maximum possible pixel value of the image.

PSNR = 10 · log10

(
MAX2

I

MSE

)
(2)

error =
∥result − origin∥2

2

∥origin∥2
2

(3)

We use CUDA 5.5 to develop our codes on GPU, and all
the computations are performed with an Intel Xeon E5640
CPU and an NVIDIA GeForce GTX 780 TI GPU, under
a Windows Server 2008 operating system. All the codes
are written with C++ and CUDA C language. We test the
acceleration effect with different number of slices of MRI
images. Table I shows the results of original CPU code

When implementing the K-SVD algorithm on CUDA, the
sparse coding step can utilize the accelerated OMP algorithm
in Algorithm 2. However, since the current loop should use
the results of the last loop in the dictionary updating step, the
algorithm cannot be parallelized. But we can still accelerate
it by parallelizing each of the operations on CUDA. We
also use the CUBLAS library to accelerate the execution of
some linear algebra operations. The experiments show very
effective results to deal with K-SVD in this way.

D. Reconstructing images using CUDA

As mentioned in Section II-A, the reconstruction scheme
consists of three steps. When both the low-resolution dic-
tionary and the high-resolution dictionary have been trained,
they can be used to achieve the final image. We employ the

TABLE I: Execution time and speed-up obtained with the
original CUDA method and CUDA-AO method

Number
of
slices

Time consumed (seconds) Speed-up
Original

CPU
Original
CUDA

CUDA-
AO

Original
CUDA

CUDA-
AO

4 1466.73 73.275 19.14 20.02 76.63
8 7251.59 146.44 45.13 49.52 237.64
12 14361.8 187.35 71.62 76.66 200.53
16 25952.9 303.65 92.59 85.47 280.31
20 29214.5 310.51 95.19 94.09 306.91
24 35789.8 377.33 110.29 94.85 324.51

method proposed in [3] and rewrite the codes using CUDA.
Firstly, we use the low-resolution dictionary to obtain the
sparse representation, where the OMP algorithm is used. The
OMP is implemented on CUDA as mentioned in the above
Section II-B.

When updating the reconstruction results, experiments
show that this procedure consumes very little time, which is
less than 0.01 seconds. Therefore, CUDA has no advantage
in this step, and we just leave the codes unchanged.

III. RESULTS

We present the performance and the acceleration effects
of the original CUDA method and the CUDA-AO method.
Furthermore, to verify that the two versions of CUDA codes
have similar quality of the result images, we compare the
peak signal-to-noise ratio (PSNR) and the reconstruction
error of the results. The formulas we use are shown in (2)
and (3), where MSE is the mean squared error, and MAXI

is the maximum possible pixel value of the image.

PSNR = 10 · log10
(

MAX2
I

MSE

)
(2)

error =
‖result− origin‖22
‖origin‖22

(3)

We use CUDA 5.5 to develop our codes on GPU, and all
the computations are performed with an Intel Xeon E5640
CPU and an NVIDIA GeForce GTX 780 TI GPU, under
a Windows Server 2008 operating system. All the codes
are written with C++ and CUDA C language. We test the
acceleration effect with different number of slices of MRI
images. Table I shows the results of original CPU code
that has no optimization and that of the original CUDA
method and the CUDA-AO method. The execution time of
the original CPU codes are also shown.

From Table I, we can see that the reconstruction procedure
of MRI can get more than 20 times of speedup using the
original CUDA method, and the acceleration effect is even
better when using CUDA-AO method, which holds about
324 times of speedup when the number of slices is 24. It
is sure that better effect of acceleration can be obtained
when the number of slices becomes larger. Fig.2 shows the
reconstruction results for a 32-slice MRI dataset, the results
of the original CUDA method and the CUDA-AO method
are shown. Meanwhile, the corresponding difference images
with the original images are also displayed. The size of
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Fig. 2: Reconstruction results and difference images. (a), (b),
(c), and (d) are slice 1, 5, 9, and 13 of the reconstruction
results respectively obtained with original CUDA method.
(e), (f), (g), and (h) are corresponding difference images of
(a), (b), (c), and (d) respectively. (i), (j), (k), and (l) are
slice 1, 5, 9, and 13 of the reconstruction results respectively
obtained with the CUDA-AO method. (m), (n), (o), and (p)
are corresponding difference images of (i), (j), (k), and (l)
respectively.

each image is 256 × 256. From Fig.2, we can conclude
that the reconstruction results of original CUDA and CUDA-
AO are nearly the same. The reconstruction results and the
corresponding difference images are similar.

Fig.3 shows the PSNR and reconstruction error compared
with the original images computed according to (2) and (3).
The difference between the PSNR of the original CUDA
method and that of the CUDA-AO method is within 2dB, and
the difference of reconstruction error changes in an interval
less than 0.005, indicating that the CUDA-AO method has
almost the same reconstruction results with the original
CUDA method while CUDA-AO is more than 3 times as
fast as the original CUDA method.

IV. CONCLUSIONS

In this work, we accelerate the reconstruction of MRI by
three-dimensional dual-dictionary learning using CUDA. The
parallel algorithm on GPU and the acceleration performance
are investigated. In addition, we develop two version of
CUDA codes: (1) the original CUDA method just directly
transfer the original CPU codes to CUDA; (2) the CUDA-
AO method first improves the original CPU codes with
algorithmic optimization, then implements the codes on
CUDA. Experiments show that about 94 times of speedup is
achieved using the original CUDA method when the number
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Fig. 3: Mean PSNR and reconstruction error of the original
CUDA method and the CUDA-AO method respectively
compared with the original images.

of MRI slices is 24, while about 324 times of speedup is
obtained with the CUDA-AO method.

This work shows that CUDA together with algorithmic
optimization has great advantages in accelerating the recon-
struction of MRI.
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