
  

 

Abstract— For DCE MRI applications, the images of adjacent 

time frames are often similar, especially when motion is minimal, 

in which case temporal TV is a reasonable regularization term. 

Temporal constraint reconstruction (TCR) has been developed 

to reconstruct dynamic images from undersampled k-t space 

data based on such prior information. However, the convergence 

speed of the algorithm highly depends on the initialization 

method. In this study, we study initialization using a composite 

high resolution image based on a jigsaw sampling pattern during 

pre-contrast frames. The proposed initialization method 

converges much faster than a conventional initialization method 

using low resolution images, especially at high reduction factors. 

In vivo breast imaging experiments were carried out to evaluate 

the performance of the proposed method. Experiments show the 

new initialization method allows TCR to achieve a high 

reduction factor up to 40 without compromising much of the 

spatial or temporal resolution. The reconstruction errors are 

much lower than those using the low resolution initialization 

when the same number of measurements is used.  

 

I. INTRODUCTION 

Dynamic Contrast Enhanced magnetic resonance imaging 

(DCE-MRI) of breast tumors provides a promising method to 

detect and characterize lesions. A contrast agent is injected 

and the data are acquired in k-space for each time frame. The 

acquired image series are used to track changes over time in 

the region of interest. By analyzing the time curve of uptake 

and washout, DCE-MRI can assist determine if the tumor is 

benign or malignant. In DCE-MRI, high spatial resolution is 

desirable to identify tumor location, and high temporal 

resolution can improve the accuracy of quantitative analysis of 

the uptake and washout curves [1]. However, there is usually a 

tradeoff between the spatial resolution and temporal 

resolution.  

A number of techniques have been developed to enable the 

acquisition of images with both high spatial and temporal 

resolutions, such as keyhole [2], RIGR [3], UNFOLD [4], 

HYPR [5], k-t BLAST/k-t SENSE [6], and low rank methods 

[7-9]. Most of these methods acquire a fraction of k-space data 

in each time frame and reconstruct images using prior 
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information to compensate for the information loss from 

reduced sampling. Recently, compressed sensing has emerged 

as another method to reconstruct dynamic images from 

undersampled data, which is based upon the principle that an 

image with a sparse representation in some transform domain 

can be recovered from randomly undersampled k-space data, 

using a nonlinear reconstruction [10]. Unlike k-t BLAST and 

k-t SENSE, compressed sensing does not require training 

data, so it may be less sensitive to inconsistencies between 

training data and practical data. Application of compressed 

sensing to dynamic MR imaging has been presented in 

methods such as k-t SPARSE [10], compressed sensing 

dynamic imaging [11], k-t FOCUSS [12], k-t ISD [13]. Often, 

temporal FFT is used as the sparsifying transform for cardiac 

cine images and PCA [14, 15] is used for images in parameter 

mapping. Temporal constraint reconstruction (TCR) method 

[16, 17] uses the temporal TV as the sparsifying transform. It 

assumes that the images of adjacent time frames are similar, 

especially when motion is minimal. Therefore, it is 

appropriate for DCE-MRI. 

In this work, we investigate the application of TCR 

method in breast DCE-MRI to improve both the temporal and 

spatial resolution.  In particular, we investigate how to choose 

the initialization such that the convergence speed is improved 

significantly. The proposed initialization method together 

with the corresponding sampling pattern is able to achieve a 

high reduction factor up to 40 without compromising much of 

the image quality or curve quantification. 

II. METHOD 

In dynamic imaging, the imaging equation is written as  

 
t t
Ef d ,  (1) 

where dt is the vector formed from the acquired k-space data at 

time t, and ft is the unknown image vector formed from the 

desired full field of view (FOV) image. The encoding matrix 

E consists of the Fourier transform, i.e. 
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where km denote the coordinates of the k-space data. To 

reconstruct the desired image given knowledge of acquired 

data, TCR assumes that the images of adjacent time frames are 

similar, especially when motion is minimal, in which case 

temporal TV is used as a reasonable regularization term. The 

problem is formulated as a constrained nonlinear convex 

program based on Eq. (1):  
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where dt is the vector formed of the under-sampled k-space 

data acquired from the t-th frame, and ft is the corresponding 

unknown image vector, T is the total number of frames, f 

consists of images of all time frames, i.e. {f1, f2,…, fT}, E is the 

Fourier encoding matrix, Wt is the sparse sampling pattern of 

k-space data from the t-th frame, TV is the total variation 

operator along the temporal domain, α is regularization 

parameter which controls the tradeoff between the data 

consistency term and the prior information term. The temporal 

TV operator on a complex image series f is defined as: 
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Gradient descent based method was used to implement the 

TCR method, which is regularly used for the minimization of 

an objective function. In [18], TCR is initialized using the low 

resolution images from the densely sampled ACS data at the 

central k-space. Such low resolution initialized TCR (LTCR) 

performs well in the cases where reduction factors are below 

12. However, when the reduction factor goes higher, LTCR 

results in performance degradation. 

 

Figure 1.  The pre-contrast frames sampling masks are shown in (a)-(h). 

Center ACS region is 8x8, and outer reduction factor is 8. The summation of 

the 8 downsampling masks (i) cover the entire k-space, and the central ACS 

region is covered 8 times. One of the post-contrast frame’s mask with 

reduction factor R = 40 is shown in (j). 

To improve the low resolution initialization, we propose a 

new initialization method using a composite image obtained 

from several frames. These frames are sampled with different 

jigsaw patterns and the sampled k-space data of these frames 

are combined along the temporal direction. Take the example 

in Fig. 1, the k-space data at ACS region are sampled in all 

frames and is thus averaged, and the outer k-space data from 

all frames are combined to generate a set of full k-space data. 

These full k-space data are then inverse Fourier transformed to 

obtain an initial estimation of a single image. This image is 

used as the initial estimation of all time frames. Then TCR is 

performed. We refer to the jigsaw initialized TCR 

reconstruction as JTCR. 

III. EXPERIMENT  

Breast DCE-MRI data were acquired on a Siemens 3 Tesla 

scanner equipped with a seven channel dedicated breast coil. 

Two datasets from two study participants with clinically 

confirmed breast cancer were obtained under an institutional 

review board approved protocol. The root sum-of-squares 

(SOS) reconstruction from fully sampled data was used as the 

gold standard for visual comparison. All k-space data were 

acquired in full and then manually undersampled 

retrospectively to simulate accelerated scans. 

The data were acquired using a 3D spoiled gradient echo 

pulse sequence with the following imaging parameters: TR = 

3.16 ms, TE = 1.24 ms, flip angle = 10°. Omniscan of dose 0.1 

ml/kg was injected at 4 mL/s followed by 20 ml saline flush 

injected at 2 mL/s. Temporal resolution was 12 s/frame with 

data acquired with 6/8 reduced Fourier space in the phase and 

slice directions and elliptical acquisition in the kx-ky plane. 

The acquisition matrices for the breast data kx × ky × kz × T 

are 256 × 83 × 64 × 45 and 256 × 83 × 64 × 42. The 

acquisition was bilateral, with the read direction left to right. 

The fast inverse Fourier transform (IFT) was performed in the 

read (kx) direction, and the ky-kz datasets were extracted from 

each slice in the x dimension. 

The pre-contrast k-space center ACS region is about 8x8, 

and outer reduction factor is 8 for the first 8 pre-contrast 

images. The combination of the pre-contrast sampling 

patterns covers the entire outer k-space once, while the central 

ACS region is covered 8 times. We name the sampling pattern 

as the jigsaw sampling, whose union from several frames 

covers the entire k-space. The post-contrast k-space data is 

undersampled with variable-density random undersampling 

with the central k-space sampled with Nyquist rate as in [19]. 

Specifically, we choose samples randomly with sampling 

density scaling according to a power of distance from the 

k-space center. Undersampled k-space data were simulated by 

randomly picking a portion of the acquired phase encodes in 

the ky and kz directions. We have tried several reduction 

factors for the post-contrast frames, e.g. R = 40. The net 

reduction factor across all frames is around 24. An example of 

the jigsaw sampling masks over the first 8 pre-contrast frames 

is shown in Fig. 1 (a)-(h), the combined samples from 8 frames 

provide an elliptical partial Fourier acquisition of the k-space, 

as shown in Fig. 1 (i). An example of the variable density 

random sampling mask for a post-contrast frame is shown in 

Fig. 1 (j). 

IV. RESULTS 

All reconstructed images of the same dataset were 

normalized and shown individually on the same scale for 

visual evaluations of image quality. In case of the curves, all 

image series are normalized by dividing the mean value of the 

first frame’s image, to make sure that the reconstructed images 
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are aligned at the beginning. Quantitative comparison was 

provided in terms of the normalized root mean squared error 

(nRMSE) with the SOS as the reference, which is defined as: 
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where f̂  is the reconstructed image and 
SOS

f  is the SOS 

image. 

 

Figure 2.  For the 1st dataset, reconstruction images of the last frame of 

LTCR for reduction factor R = 40, iteration number = 0, 500, 2000 (LTCR0, 

LTCR500, LTCR2000) are shown at (a), (b), (c). Reconstruction images for 

the last frame of JTCR for R = 40, iteration = 0, 500 (JTCR0, JTCR500) are 

shown at (d), (e). The SOS image of the last frame is shown in (f). The 

nRMSE of the last reconstructed frame (number at the top) and the average 

nRMSE of all reconstructed frames (number at the bottom)  are shown in 

each subfigure. It shows that for the high reduction factor R=40, JTCR 

achieves superior performance to LTCR with much less number of iterations.  

Fig. 2 compares the reconstructed images using TCR with 

jigsaw initialization (JTCR) and low resolution initialization 

(LTCR) for the first dataset.  It is seen at high reduction factor 

of R=40, JTCR reconstruction with 500 iterations has much 

better resolution than LTCR reconstructions with 500 and 

even 2000 iterations. The JTCR reconstruction is close to SOS 

reconstruction visually. We also plot the mean signal intensity 

time curves for two different regions with breast lesions. The 

mean signal intensity time curves of JTCR in Fig. 3 are much 

closer to the SOS curves than those of LTCR do. 

For the second dataset, Fig. 4 and Fig. 5 present the 

reconstructed images and the mean signal intensity time 

curves of two breast lesion regions using JTCR and LTCR. 

Similar to the observations of the first dataset, we see that at 

the high reduction factor of R=40, JTCR with 500 iterations 

yields a much sharper image than that of LTCR with 2000 

iterations. The time curves of JTCR with 500 iterations are 

also much closer to the SOS curves compared to that of the 

LTCR curves with 2000 iterations.  

 

Figure 3.  Comparisons the reconstructed time curves of SOS, JTCR500, 

LTCR500, and LTCR2000 for the 1st dataset. The x-axis represents the index 

of the time frame, and the y-axis represents the mean signal intensity. It 

shows that JTCR yields more accurate time curves than LTCR does at R = 

40. The nRMSEs of the reconstructed curves compared with the SOS curves 

are shown in each figure. 

 

Figure 4.  For the 2nd dataset, reconstruction images of the last frame of 

LTCR at reduction factor R = 40, iteration = 0, 500, 2000 (LTCR0, 

LTCR500, LTCR2000) are shown at (a), (b), (c). Reconstruction images for 

the last frame of JTCR iteration = 0, 500 (JTCR0, JTCR500) are shown at 

(d), (e). The SOS reconstruction of the last frame is shown in (f). The nRMSE 

of the last reconstructed frame (number at the top) and the average nRMSE of 

all reconstructed frames (number at the bottom) are shown in each subfigure. 

It shows that for high reduction factors, JTCR outperforms LTCR with much 

less number of iterations. 
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Figure 5.  Comparisons of the reconstructed curves of SOS, JTCR500, 

LTCR500, and LTCR2000 for the 2nd dataset. It shows that at R = 40, JTCR 

yields better estimates of the time curves than LTCR does. The nRMSEs of 

the  reconstructed curves compared with the SOS curves are also shown. 

V. DISCUSSION 

Since both the fidelity term and the temporal TV term are 

convex functions, the objective function of TCR is convex. In 

theory, it will eventually converge to the global optimal 

solution independent of the initial values. However, the initial 

guess using the low resolution image deviates from the SOS 

image so much that the algorithm needs many iterations to 

converge to the optimal solution. As we show in Figs. 2 and 4, 

the initial image of the jigsaw initialization is close to the SOS 

image, whereas the initial image of low resolution 

initialization is blurry. In addition, the number of unknown 

variables in TCR reconstruction is generally very large, which 

causes the algorithm to not converge until after several 

thousand iterations with low resolution initialization, 

especially at high reduction factors such as R=40. The jigsaw 

initialization converges quickly due to the better initialization 

which is close to the SOS image. As seen in the results, the 

JTCR outperforms LTCR at 500 iterations in both the visual 

quality of the image and the temporal curves. Although with 

2000 iterations, the image quality of LTCR improves and the 

LTCR’s curves move towards the SOS ones, LTCR is still 

inferior to JTCR while the running time is 4 times longer. 

VI. CONCLUSION 

We study a new initialization method and sampling 

patterns to utilize high resolution images to initialize TCR. In 

vivo experimental results demonstrate that this initialization 

method and sampling patterns provide reconstructions 

superior to those using low resolution initialization visually 

and quantitatively. 
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