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Abstract— We propose an efficient numerical technique for
calibrating the mathematical model that describes the single-
event related brain response when fMRI measurements are
given. This method employs a regularized Newton technique in
conjunction with a Kalman filtering procedure. We have applied
this method to estimate the biophysiological parameters of the
Balloon model that describes the hemodynamic brain responses.
Illustrative results obtained with both synthetic and real fMRI
measurements are presented.

I. INTRODUCTION

We consider the problem of calibrating the model that
describes single-event related brain response when fMRI
measurements are given. More specifically, we propose to
estimate the biophysiological parameters of the so-called
Balloon model, which is a dynamical system that describes
the hemodynamic brain responses [1]. This problem can be
formulated as an inverse problem that falls in the category of
parameter identification of a dynamical system. We propose a
regularized Newton method equipped with a Kalman filtering
procedure to estimate these parameters from the knowledge
of some fMRI measurements. The Newton component of
the proposed algorithm addresses the nonlinear aspect of the
problem. The regularization feature is used to ensure the
stability of the algorithm. The Kalman filter is a de-noising
procedure incorporated to address the noise in the data. We
have conducted a numerical investigation using synthetic data
tainted with various noise levels to assess the performance of
the proposed method [2]. We present results to illustrate the
potential of the proposed solution methodology to accurately
and efficiently estimate the biophysiological parameters.
These results clearly indicate that the proposed method
outperforms the Cubature Kalman Filter (CKF), a procedure
that is considered to be among the most successful parameter
estimation techniques [3]. Finally, we also present results
obtained from using real fMRI measurements corresponding
to a finger-tapping stimulus.
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II. PROBLEM STATEMENT

A. The Hemodynamic System: The Direct Problem

The problem of describing the single-event related hemo-
dynamic brain response to an exogenous input can be for-
mulated in the framework of the dynamical system theory.
The model we consider is called the hemodynamical system
(HDS) [4] which is a first-order nonlinear differential system
given by:

(HDS)





~̇x(t) = A(~θ; ~x(t)) + νt
ỹ(t) = H(~θ; ~x(t)) + ωt ; t ≥ 0

~x(0) = ~̃x0
(1)

where the component of the state vector ~x(t) =
(f(t), s(t), v(t), q(t))T are defined in Table I and the bio-
physiological system parameters ~θ = (α, ε,K,X , τ, E0, V0)T

are listed in Table II. The nonlinear vector-valued functionA
describes the underlying physiology of the continuous hemo-
dynamic system and is given by:

A(~θ; ~x(t)) =





s(t)
εu(t)−Ks(t)−X (f(t)− 1)
τ(f(t)− v(t)1/α)

τ(f(t) 1−(1−E0)
1/f(t)

E0
− q(t)v(t)(1/α−1))

(2)
where t→ u(t) is the prescribed control input [2], [3]. The
real-valued function H models the observations, that is, the
Blood Oxygenation Level Dependent (BOLD) signal. H is
given by:

H(~θ; ~x(t)) = V0 [k1(1− q(t)) + k2(1− q(t)/v(t))

+k3(1− v(t))] (3)

Note that νt (resp. ωt) is a random vector with zero mean and
4×4 positive semidefinite covariance matrix, Qt (resp. real-
valued covariance, Rt), depending on the time t. νt (resp.
ωt) represents the level and distribution of the noise in the
process equations (resp. in the measurements). Hence, ỹ(t)
represents the noisy bold signal at time t. k1, k2 and k3 are
positive constants given by k1 = 7E0, k2 = 2 and k3 =
2E0 − .2 [3].

B. The Discrete Inverse Problem

The determination of the parameters ~θ of HDS(1) from
the knowledge of some BOLD signal measurements ~y can
be formulated as the following inverse parameter problem:
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TABLE I
DESCRIPTION OF STATE VARIABLES

State variables Description Values at rest
f(t) Cerebral blood flow 1
s(t) Flow inducing signal 0
v(t) Normalized cerebral blood volume 1
q(t) Normalized total deoxyhemoglobin content level 1

TABLE II
DESCRIPTION OF THE BIOPHYSIOLOGICAL PARAMETERS

Descriptions Parameters
Stiffness exponent ↵
Neural efficacy ✏
Rate of signal decaying K
Rate of flow-dependent elimination X
Hemodynamic transit time ⌧
Resting net oxygen extraction fraction E0

Resting blood volume V0

II. PROBLEM STATEMENT

A. The Hemodynamic System: The Direct Problem

The problem of describing the single-event related hemo-
dynamic brain response to an exogenous input can be for-
mulated in the framework of the dynamical system theory.
The model we consider is called the hemodynamical system
(HDS) [4] which is a first-order nonlinear differential system
given by:

(HDS)

8
><
>:

~̇x(t) = A(~✓; ~x(t)) + ⌫t

y(t) = H(~✓; ~x(t)) + !t ; t � 0

~x(0) = e~x0

(1)
where the component of the state vector ~x(t) =
(f(t), s(t), v(t), q(t))T are defined in Table I and the bio-
physiological system parameters ~✓ = (↵, ✏, K, X , ⌧, E0, V0)

T

are listed in Table II. The nonlinear vector-valued functionA
describes the underlying physiology of the continuous hemo-
dynamic system and is given by:

A(~✓; ~x(t)) =

8
>><
>>:

s(t)
✏u(t) � Ks(t) � X (f(t) � 1)
⌧(f(t) � v(t)1/↵)

⌧(f(t) 1�(1�E0)
1/f(t)

E0
� q(t)v(t)(1/↵�1))

(2)
where t ! u(t) is the prescribed control input [2], [3]. The
real-valued function H models the observations, that is, the
Blood Oxygenation Level Dependent (BOLD) signal. H is

TABLE II
DESCRIPTION OF THE BIOPHYSIOLOGICAL PARAMETERS

Descriptions Parameters
Stiffness exponent α
Neural efficacy ε
Rate of signal decaying K
Rate of flow-dependent elimination X
Hemodynamic transit time τ
Resting net oxygen extraction fraction E0

Resting blood volume V0

(IPP)





Given an initial state ~̃x0, a control input
u(tj) = (u(t0), u(t1), . . . , u(tM ))T ,
and a BOLD signal ~̃y = (ỹ0, ỹ1, . . . , ỹM )

T ,
find ~θ and ~x(t) such that:
H̃(~θ; ~x(tj)) = ỹj ; j = 0, 1, . . . ,M

where the tilde notation indicates a noisy quantity, ỹj is
the noisy measured BOLD signal at time tj , and M is the
number of measurements.

III. PARAMETER ESTIMATION: THE SOLUTION
METHODOLOGY

The parameter identification problem IPP is an inverse
problem that is difficult to solve, especially from a numer-
ical point of view, because it is nonlinear and ill-posed.
In practice, this means that small errors in the measured
BOLD signal can induce large errors in the estimate of the
parameters. The proposed solution methodology is based
on the Tikhonov-regularized Newton method (TNM) [5],
since regularized iterative methods appear to be the primary
candidates for solving nonlinear and ill-posed problems (see,
e.g., [6], and the references therein). The Newton algorithm
addresses the nonlinear aspect of IPP, whereas the Tikhonov
regularization procedure is incorporated to address its ill-
posed nature [7]. In addition, a Kalman-type de-noising pro-
cedure is built within the proposed method to filter the noise
contaminating the considered model. More specifically, we
employ the so-called cubature Kalman filter (CKF)[3]. To the
best of our knowledge, this is the first time TNM is employed
in conjunction with CKF resulting in a novel procedure with
a great potential for solving IPP efficiently and accurately, as
illustrated by the results reported in Section IV-A and Section
IV-B. For more details about the performance and limitations
of the existing numerical methods for solving IPP, the reader
can see [2] and the references therein.

A. The Regularized Newton Algorithm

The solution of the IPP by the regularized Newton algo-
rithm incurs at each iteration m the solution of the linearized

problem of the form:
M∑
j=1

7∑
l=1

∂H̃(m)

∂θk
(θ

(m)
l ; ~x(m)(tj))

∂H̃(m)

∂θl
(~θ(m); ~x(m)(tj))δθ

(m)
l

+γδθ
(m)
k =

M∑
j=1

∂H̃(m)

∂θk
(~θ(m); ~x(m)(tj))

(
ỹj − y(m)(tj)

)
; k = 1, . . . , 7

(4)
and then we update ~θ(m+1) = ~θ(m) + ~δθ

(m)
. Note that

y(m)(t) = H̃(m)(~θ(m); ~x(m)(t)), and the positive real num-
ber γ is the Tikhonov regularization parameter. The choice
of γ is a balancing act between stability and accuracy [2].
The critical step in the numerical implementation of the
regularized Newton method is the computation, at each
iteration m, of the Jacobian J

(m)
H =

[
∂H̃
∂θl

(~θ(m); ~x(m)(tj))
]

for j = 1, . . . ,M and l = 1, . . . , 7. Such computation
must be executed with a high level of accuracy to ensure
the stability, fast convergence and computational efficiency
of the proposed Newton algorithm. The evaluation of these
derivatives requires the computation of the derivatives of the
state vector ~x with respect to the parameters ~θ. We have
demonstrated a theorem that shows that these derivatives
are the solutions of ordinary differential systems similar to
HDS(1) but with different right-hand-sides (see Theorem 1
page 20 in [2]). Note the 7×7 linear system given by Eq. (4)
is inverted using a standard direct method (LU factorization).

B. Cubature Kalman filtering

The CKF procedure is a nonlinear filtering procedure
that is derivative-free and more importantly the number
of integration points, called the cubature points, increases
linearly with the state-vector dimension. The CKF algorithm
evaluates the BOLD signal in two steps: (a) a time update
step in which predicted estimates of the state-vector and error
covariance matrix are delivered at the next time step, and (b)
a measurement update step in which corrected estimates of
the predicted values are calculated.
i-The Prediction Step in CKF. For l = 0, 1, . . . ,M , let ~xl
(resp. Pl) be an estimated value of the state vector ~x (resp.
the error covariance matrix P ) at time tl. Suppose that ~xl
and Pl have been evaluated up to l = j where j < M − 1.
Then, in order to compute ~xj+1 and Pj+1, we first calculate
in this step ~̂xj+1 (resp. P̂j+1) a predicted estimate of the state
vector (resp. the corresponding error covariance matrix). We
evaluate ~̂xj+1, by first calculating the cubature vectors as
follows:

~ci,j = Sj~ξi + ~xj ; i = 1, 2, · · · , 8 (5)

where Sj results from the Cholesky factorization of the error
covariance matrix Pj , that is, Pj = SjS

T
j and ~ξi is the given

ith column vector of the cubature points matrix (see Eq.
7, page 2112 in [3]). Then, using the process equation in
HDS(1) and the cubature vectors calculated in Eq. (5), we
solve the following first order differential system

{
~̇zi = A(~θ;~zi)
~zi = ~ci,j

; i = 1, . . . , 8 (6)
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and then evaluate the ith “propagated ” cubature vectors
at time tj+1, that is, ~zi,j+1 = ~zi(tj+1). Note that, the
differential system given by Eq. (6) is typically solved using
Runge-Kutta methods of order 4.
The predicted estimate for the state at time tj+1 is then
calculated as follows:

~̂xj+1 =
1

8

8∑

i=1

~zi,j+1 (7)

Furthermore, the predicted estimate for the error covariance
matrix P̂j+1 at time tj+1 is evaluated as follows:

P̂j+1 =
1

8

8∑

i=1

~zi,j+1~c
T
i,j+1 − ~̂xj+1~̂x

T

j+1 +Qj+1 (8)

where Qj+1 = Qtj+1 is the process noise covariance matrix
defined in Section II-A.
ii-The Correction Step in CKF. This step is called the cor-
rection step. The goal here is to calculate xj+1 and Pj+1 by
“correcting” the predicted values x̂j+1 and P̂j+1, and yj+1,
the estimated BOLD signal at time tj+1 is then deduced. To
this end, we first evaluate ~xj+1 as follows:

~xj+1 = ~̂xj+1 + (ỹj+1 − ŷj+1)
−→
W j+1 (9)

where ỹj+1 is the given measured BOLD signal at time
tj+1, ŷj+1 is the predicted BOLD signal at time tj+1. It
is calculated by applying the cubature quadrature rule to the
measurement equation given in HDS(1) as follows:

ŷj+1 =
1

8

8∑

i=1

H(~θ; ~̂ci,j+1) (10)

with ~̂ci,j+1 being the ith “predicted ” cubature vector ob-
tained as follows:

~̂ci,j+1 = Ŝj+1
~ξi + ~̂xj+1; i = 1, 2, · · · , 8 (11)

where the matrix Ŝj+1 results from the Cholesky factoriza-
tion of the predicted error covariance matrix P̂j+1 at time
tj+1, that is, P̂j+1 = Ŝj+1Ŝ

T
j+1.

−→
W j+1 is the so-called

Kalman gain at time tj+1, and is given by:
−→
W j+1 = M−1

j+1

−→
N j+1 (12)

The real number Mj+1, called the innovation covariance
value, is given by:

Mj+1 =
1

8

8∑

i=1

(
H(~θ; ~̂ci,j+1)

)2
− ŷ 2

j+1 +Rj+1 (13)

and Rj+1 = R(tj+1) is the measurement noise covariance
value. The vector

−→
N j+1, called the cross covariance vector,

is given by:

−→
N j+1 =

1

8

8∑

i=1

H(~θ; ~̂ci,j+1)~zi,j+1 − ŷj+1~̂xj+1 (14)

The corrected error covariance matrix is then evaluated as
follows:

Pj+1 = P̂j+1 −Mj+1
−→
W j+1

~WT
j+1 (15)

TABLE III
BIOPHYSIOLOGICAL PARAMETERS: TARGET VS. INITIAL VALUES.

Parameters (~θ) α ε K X τ E0 V0
Target (~θ∗) .45 .6 .4 .15 .4 .3 1.05

Initial guess (~θ(0)) .5 .5 .5 .5 .5 .5 .5

where P̂j+1, Mj+1 and
−→
W j+1 are given by Eqs. (8),(13) and

(12) respectively.
Last, we deduce the estimated BOLD signal at time tj+1 as
follows:

yj+1 = H(~θ, ~xj+1) (16)

IV. ILLUSTRATIVE NUMERICAL RESULTS

A. Parameter Estimation with Synthetic Data

Because of space limitations, we present the result of
one numerical experiment to illustrate the potential of the
proposed solution methodology for calibrating efficiently the
hemodynamical system HDS(1). In this experiment an on-off
control input is employed, that is, u(t) is a step function [2],
[3].
The synthetic BOLD signal (see Figure 1) is generated
by solving the noise free hemodynamical system HDS(1)
with the initial state vector ~x0 = (1, 0, 1, 1)T and the
biophysiological system parameters ~θ∗ are listed in Table III.
Moreover, we consider a set of 25 measurements (M = 25)
taken every three second (∆t = 3 s), that is, ~̃y ∈ R25 and
yj = y(j∆t). The goal of this experiment is to illustrate the
robustness of the method to the noise level in the measured
BOLD signal. We artificially add white noise to the data as
follows: 5% to ~x0, 1% to the process equation, and 10%
to ~y. We use a blind guess for the initial biophysiological
parameters vector ~θ(0) whose components are all set to .5
(see Table III). The obtained results are depicted in Figures
2-3. These results were obtained with γ = 18, selected
via a trial and error strategy. Note that it is possible to
use other values of γ in an interval containing 18 and
obtain comparable results, as indicated in [2]. The following
observations are noteworthy:

• As reported in Table III the initial parameters’ values
~θ(0) is selected outside the pre-asymptotic convergence
region. Indeed, Figure 1 shows that the use of this initial
guess with HDS(1) leads to an initial BOLD signal
profile that is very far from the target (the L2- relative
error is over 78%)

• The result depicted in Figure 2 reveals that the TNM-
CKF algorithm delivers a signal with an excellent
accuracy level (the relative error drops to 4.6%) which
is remarkable considering the relatively high noise level
in the data. Note that the relative error, in the euclidean
norm, on the parameters that was initially 49% de-
creases monotonically and reaches 15% at convergence.

• Figure 3 indicates that TNM-CKF algorithm requires
only 3 iterations to converge (the relative residual is
about 8%). This performance illustrates the efficiency
of the method and its robustness to the noise effect.
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Fig. 1. Synthetic BOLD signal profiles: Target (solid-black). Measured
with 10% white noise (dotted-red) and Initial (solid-magenta).
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Fig. 2. Synthetic BOLD signal profiles: Target (black). Computed with
TNM-CKF (blue).
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Fig. 3. Convergence history of the TNM-CKF algorithm in the case of
synthetic measurements.

B. Parameter Estimation with Real Data

We consider here the case of real fMRI measurements
corresponding to a face-repetition stimulus [8]. More specif-
ically, famous and non-famous faces were presented twice
against a check board baseline. The subject was asked to
make fame judgement by making key presses [8]. We applied
the TNM-CKF using 385 BOLD measurements, ~θ(0) given
in Table III, ~x0 = (1, 0, 1, 1)T , and an on-off control input.
Figure 4 indicates that TNM-CKF delivers a BOLD signal
with an excellent accuracy level (about 12% relative error)
and Figure 5 demonstrates the convergence of the TNM-CKF
algorithm after only 15 iterations.

V. CONCLUSIONS

The TNM-CKF algorithm is a solution methodology that
is conceptually simple to understand and implement. The
calibration results obtained with both synthetic and fMRI
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Fig. 4. BOLD signal profiles: Real (black) vs. Computed (blue).
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Fig. 5. Convergence history of the TNM-CKF algorithm in the case of
real measurements.

measurements clearly indicate that TNM-CKF algorithm is
robust to the noise effect and requires few iterations to
converge to an accurate solution even when starting with
an initial guess value of the parameters outside the pre-
assymptotic convergence region.
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