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Abstract— This study aims classification of phosphorus 
magnetic resonance spectroscopic imaging (31P-MRSI) data of 
human brain tumors using machine-learning algorithms. The 
metabolite peak intensities and ratios were estimated for brain 
tumor and healthy 31P MR spectra acquired at 3T. The spectra 
were classified based on metabolite characteristics using logistic 
regression and support vector machine. This study showed that 
machine learning could be successfully applied for classification 
of 31P-MR spectra of brain tumors. Future studies will measure 
the performance of classification algorithms for 31P-MRSI of 
brain tumors in a larger patient cohort. 

I. INTRODUCTION 

Phosphorus magnetic resonance spectroscopic imaging 
(

31
P-MRSI) is an MR imaging modality that detects signals 

coming from phosphorus containing metabolites and it can 
provide information regarding the energy metabolism, 
oxygen state and pH within a given region of interest. 
Phosphocreatine (PCr), phosphocholine (PC), 
phosphoethanolamine (PE), glycerophosphocholine (GPC), 
glycerophosphoethanolamine (GPE), inorganic phosphate 
(Pi), and three different peaks for the ATP molecule, γ-ATP, 
α-ATP, and β-ATP peaks, are the major metabolites 
observed with 

31
P-MRS. Phosphocreatine (PCr) is a marker 

of phosphorilative energy metabolism and is considered as 
the reference peak in 

31
P spectra. PC and PE are the 

phosphomonoesters (PME) that are produced from choline 
and ethanolamine phosphorylation during membrane 
synthesis. GPC and GPE are the phosphodiesters (PDE) that 

are formed during membrane degradation. -ATP peak is 
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used to estimate the ATP level, because this peak does not 
experience contamination from AMP and ADP. In addition 
to the metabolic information, 

31
P MRS can also be used to 

estimate the intracellular pH level using the frequency 
difference between the inorganic phosphate and PCr peaks 
[1]. 

Several studies have reported 
31

P-MRSI peak 

differences between brain tumors and healthy tissue. A 

reduction of PCr/-ATP ratio [2] and an increase in Pi/PCr 

ratio [1] has been reported in ischemic tissue. Additionally, a 

20-70 percent decrease in metabolite intensities, and a 

significant increase in pH levels have been reported in brain 

tumors imaged at 1.5T [1]. Maintz et al. similarly reported 

an alkaline environment (pH=7.16) and a decrease in PCr 

and PDE peaks, and in PDE/-ATP ratio in meningiomas 

[2]. In patients diagnosed with a grade II or grade III 

gliomas, a slight alkalization (pH = 7.09) and more than a 

twofold reduction in the PDE/-ATP ratio was observed [2]. 

Moreover, a recent study reported an increased ratio of 

phosphocholine to glycerophosphocholine (PC/GPC) with 

increasing glioma grade [3]. Additionally, an increase in 

PC/GPC ratio has been reported to indicate tumor 

progression after antiangiogenic therapy and has been 

associated with shorter overall survival [4]. An elevation in 

the ratio of PE/GPE in normal appearing tissue was also 

considered as indicative of tumor infiltration [4].  
There have been several studies aiming to classify brain 

tumors based on MR spectroscopic imaging using machine-
learning algorithms. Support vector machine, logistic 
regression, and linear discriminant analysis algorithms have 
been successfully implemented for classifying proton high-
resolution magic angle spinning spectroscopy (

1
H HRMAS) 

of recurrent low-grade gliomas in terms of their malignancy 
transformation [5]. Logistic regression analysis was 
performed to identify the relationship between choline over 
N-acetyl aspartate (Cho/NAA), histological parameters, and 
the degree of tumor infiltration, and it was shown that high-
grade and low-grade gliomas exhibited different 
spectroscopic patterns [6]. A sensitivity of 93.8% and a 
specificity of 85.7% were reported for discriminating 
progressive tumors from non-progressive tumors based on 
ln(Cho/Cr) and ln(Cho/NAA) using logistic regression [7]. 
Logistic regression analysis was also employed to 
differentiate tissue characteristics (spectroscopically normal, 
pure tumor, mixed tumor, and radiation necrosis) based on 
1
H-MRSI parameters [8]. Support vector machines were 

used to discriminate gliomas and meningiomas from healthy 
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tissue based on 
1
H-MRSI metabolic markers [9]. Devos et al. 

compared the performances of linear discriminant analysis, 
and least squares support vector machines (LS-SVM) with a 
linear kernel and with a radial basis function kernel based on 
MRSI data to differentiate low-grade versus high-grade 
tumors, low-grade versus high-grade gliomas and gliomas 
versus meningiomas with area under the curve (AUC) 
results of higher than 0.91, 0.94, and 0.99, respectively [10]. 

In this study, we aim to classify brain tumors based on 
phosphorus MR spectroscopic imaging acquired at a high 
field strength of 3T using logistic regression, and support 
vector machine with a linear and non-linear kernel, which 
has not been previously reported.  
 

II. MATERIALS AND METHODS 

A. Subjects 

Three healthy volunteers (average age = 39.712.9 years) 
and 10 brain tumor patients (2 NHL, 2 GBM, 1 
oligodendroglioma grade 1, 4 grade 2, 1 metastasis, 1 

anaplastic oligodendroglioma, average age=48.911.8 
years), who provided informed consent in accordance with 
the Ethics Review Board regulations of our institute, were 
scanned on a 3T clinical MR scanner (Philips Medical 
Systems, Best, Netherlands), equipped with a dual channel 
31

P/
1
H quadrature head coil. A T1 weighted fast field echo 

(FFE) or a T2 weighted spin echo (SE) MR images were 
acquired and used as the anatomical reference for 
subsequent spectroscopic data acquisition. Two-dimensional 
31

P-MRSI datasets were acquired with a pulse and acquire 
(PA) sequence (TR=4.8s, NSA=4, 3000Hz, 1024 points, 
FOV=160x160mm, 20x20x40mm voxel size, scan time=16 
min). There was a timing delay of 1.4072 ms between the 
RF pulse and data acquisition, which resulted in a first-order 
phase error. MR spectroscopic data were processed using 
AMARES within jMRUI software [11]. Two consecutive 
10Hz Lorentzian filters were used to apodize the signal, and 
first order phase error was corrected. jMRUI was used to 
overlay the anatomical MR images with the spectra, and 42 
healthy and 44 tumor voxels were determined from all 
datasets. After pre-processing in jMRUI, spectra were read 
in MATLAB (The Matworks Inc., Natick, MA) with in-
house MR spectra reader scripts. The frequency ranges of all 
the 

31
P metabolites were determined, and the peak heights 

and ratios of these metabolites were calculated for each 
voxel. The metabolite intensities were normalized with the 
PCr peak height of the same voxel. Logistic regression, and 
support vector machine with a linear and non-linear kernel 
were used to classify tumor voxels based on their 
phosphorus MR spectroscopic imaging characteristics. 

 

B. Logistic Regression 

Logistic regression fits a probabilistic model or a 
hypothesis function h, to a data set, S, defined as, 

   {(     )}              
          {    }    

   ( )    ( 
      ) 

where, f is the number of features, n is the number of 
samples, x are feature vectors of size f,  and y are the outputs 
of feature vectors x [12]. The hypothesis function, h, 

calculates the probability of y being a +1 for a given input 
vector x (     ( )   ). 

The sigmoid function was used as the transfer function, g, 
denoted as,  
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The possible values for y were set as 0 for healthy and +1for 
tumor voxels.  A cut-off value, b, should be determined to 
use the hypothesis function as a two-valued discrete function 
for class membership prediction purposes. Then, the 
hypothesis function, h, can be re-written as, 

  ( )  {
   (        )   

    (       )   


 In this study, Statistics Toolbox 7.1 (R2009a) of 
MATLAB (The Mathworks Inc., Natick, MA) was used to 
calculate the optimal coefficients vector θ. The optimal 
cutoff point, b, was found using receiver operating 
characteristic (ROC) curve in MATLAB. 

 

C. Support Vector Machine 

Support vector machine (SVM) is a machine learning 
method, which aims to find a hyperplane, h, that would be 
used for predicting the class membership of a new dataset 
[12]. Finding the optimal hyperplane is an optimization 
problem, such that for each member of training data, {(xi, 
yi)}i=1,n, the margin between the groups given as,  

        
 

|| ||
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is maximized subject to,  
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where, w is the normal vector of the optimal separating 
hyperplane, x are feature vectors of samples, b is a scalar 
representing the distance of the normal vector to the origin, 
and y denotes the class of the feature vector, x. In this study, 
the possible classes were labeled as -1 for healthy and +1 for 
tumor voxels. 

If the training data is not linearly separable, a non-linear 
kernel can be used to project the data to a high-dimensional 
space [13]. In this study, support vector machine 
classification was used with a linear or a polynomial kernel in 
MATLAB. Three-order polynomial kernel was defined as, 

  (   )  (      ) 

where, d was the degree of the polynomial function and c was 
a scalar. The optimum value for the box constraint c for the 
soft margin was calculated by employing a fit function that 
minimizes misclassification rate using four-fold cross 
validation. 

 

D. Support Vector Machine-Based Recursive Feature 
Elimination 

Recursive feature elimination (RFE) enhances the 
performance of the classifiers when the size of the features is 
high. RFE is an iterative method, where the feature having 
the lowest score based on a classifier model is eliminated 
with each iteration, and the iterations are stopped when more 
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efficient features are left. In this study, support vector 
machine with linear kernel was used to calculate the scores 
for the features. Lagrange multipliers, α, of the support 
vectors were used to calculate the scores of a feature j, as, 

    (∑         
 
   )

 
 

 
where, k is the number of support vectors, and xi,j is the 
value of feature, j, for sample, i. The elimination procedure 
was repeated five times [14]. 

 

E. Performance Comparison of Classifiers 

Support vector machine with a linear kernel (SVM_LN), 
support vector machine with a polynomial kernel (SVM_PL), 
and logistic regression (LR) were used to distinguish normal 
and tumor voxels based on 

31
P-MRSI data. Four-fold cross 

validation was used to measure their relative performances. 
Cross validation gives different results at each trial due to 
random partitioning of data. To reduce variability, forty 
rounds of cross-validation were performed using different 
partitions, and the validation results were averaged. The 
ninety percent confidence intervals of accuracy were also 
computed. 

 

III. RESULTS AND DISCUSSION 

Figure 1 shows an example 
31

P-MRSI data acquired from 

a thirty-seven years old female patient diagnosed with a 

grade II oligodendroglioma. Tumor was hyperintense in the 

T2 weighted spin echo image. There were lower PCr, and 

higher PME and PDE peaks within the tumor region.  
 

 
Figure 1. An example 31P-MRSI data acquired from a thirty-seven 

years old female patient diagnosed with a grade II oligodendroglioma. a) T2 
weighted spin echo (SE) MR image, and b) 31P-MRSI data within the tumor 

region. 

 

Table I shows the scores of each feature calculated at five 

iterations of RFE. The feature having the least score is shown 

in bold, which is then eliminated at that given iteration. At 

the end of five iterations, seven features, which were GPC, 

PE, gATP, GPC+GPE, PC+PE, PC/GPC, and PE/GPE, were 

determined as the most effective features for classification.  
The distribution of 

31
P-MRSI peak intensities in normal 

versus tumor voxels is shown in Figure 2, where the circles 
are the mean, the boundaries of the boxes are the 25

th
 and 

75
th

 percentiles, and the dots are the outliers of the data. 
Tumor voxels displayed a higher GPC, PE, γ-ATP, 
GPC+GPE, PC+PE, and PE/GPE than normal voxels.  

Table II summarizes the average performance 
measurements of forty four-fold cross validations for each of 
the three classification models. Support vector machine with 
linear kernel, support vector machine with polynomial kernel, 
and logistic regression were able to distinguish normal voxels 
from tumor voxels based on their phosphorus MR 
spectroscopic peak parameters, with 80.74%, 77.69%, and 
90.51% sensitivities, respectively.  

TABLE I.  SCORES AND ELIMINATED FEATURES OF SVM-RFE  

 Iterations of SVM-RFE 

 1
st
 

Iteration 
2

nd
 

Iteration 
3

rd
 

Iteration 
4

th
  

Iteration 
5

th
  

Iteration 

GPC 83.48 94.71 94.76 94.75 96.81 

GPE 55.01 64.55 64.49 - 
- 

Pi 35.15 - - - - 

PC 37.23 45.05 - - 
- 

PE 71.14 82.82 82.95 83.06 85.45 

gATP 74.39 85.00 85.10 85.17 85.61 

aATP 68.53 80.47 80.42 80.51 81.25 

bATP 64.87 75.14 74.96 75.10 
- 

GPC+GP
E 

274.03 315.65 315.60 316.20 
322.08 

PC+PE 211.28 250.05 249.30 249.52 255.60 

PC/GPC 209.35 254.43 253.96 253.96 258.45 

PE/GPE 600.18 686.24 690.04 689.56 705.55 

Eliminated features are shown in bold, which are indicated with a (-) in the subsequent iterations. 

 

Figure 2. The distribution of the 31P-MRSI data in normal versus tumor 
voxels. 

TABLE II.  PERFORMANCE RESULTS FOR THREE CLASSIFIER MODELS 

 
Performance Evaluations (%) 

Accuracy Sensitivity Specificity CI* 

SVM_LN 74.80 80.74 68.37 [73.78 - 75.81] 

SVM_PL 73.84 77.69 70.20 [72.99 - 74.68] 

LR 81.71 90.51 72.56 [80.98 - 82.43] 

* 90% confidence intervals for accuracy results. 
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Once the classifier accuracies were determined, the final 
classifier models were built using both the training and test 
datasets [5]. The ROC curve for the final model of logistic 
regression is shown in Figure 3. The optimum threshold 
value, b, was found as 0.538 at the corner of the ROC curve 
resulting in a false positive rate of 0.114 and a true positive 
rate of 0.786. The coefficient vector, θ, of the probability 
function, g, for the logistic regression model based on the 
optimal threshold value, b, was calculated as,  

θ = [1.66; 0.58; 15.19; 9.64; -7.77;1.31; 7.19],       (9)  

with a scalar θ0 = - 19.16.                    

 

 

Figure 3. ROC curve for logistic regression method to classify tumor voxels 
based on 31P-MRSI features using the whole dataset for training and then 

for testing. The optimal cutoff for the prediction threshold, b, was found at 
point [0.1136, 0.7857]. 

 

IV. CONCLUSION 

The results of this study showed that support vector 

machine and logistic regression can be employed for 

defining classification models to discriminate brain tumor 

from normal tissue based on 
31

P-MRSI data at 3T. The three 

classification methods were comparable in performance. 

Logistic regression resulted in a higher sensitivity, 

specificity and accuracy than both SVM methods. The main 

limitation of this study was small subject population 

resulting in rather low accuracy. Future studies will explore 

the applicability of machine learning algorithms for 

phosphorus MR spectroscopic data classification in a larger 

dataset. Additional studies will explore differentiating 

glioma subgroups using machine-learning algorithms based 

on 
31

P-MRSI data.   
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