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Abstract— The purpose of this work was to develop an 
algorithm for detecting brain metastases in magnetic resonance 
imaging (MRI), emphasizing the reduction of false positives. 
Firstly, three-dimensional templates were cross-correlated with 
the brain volume. Afterwards, each lesion candidate was 
segmented in the three orthogonal views as a previous step to 
remove elongated structures such as blood vessels. In a 
database containing 19 patients and 62 brain metastases, 
detection algorithm showed a sensitivity of 93.55%. After 
applying the method for false positive reduction, encouraging 
results were obtained: false positive rate per slice decreased 
from 0.64 to 0.15 and only one metastasis was removed, leading 
to a sensitivity of 91.94%. 

I. INTRODUCTION 

Brain metastases (BM) occur in approximately one 
quarter of adult cancer patients, being lung tumors the most 
common source. The cognitive and motor signs caused by 
BM decrease life quality and can even threaten patients' life 
without proper treatment in time. Therefore, it is of vital 
importance to detect BM in their initial stage. Diagnosis is 
carried out by means of magnetic resonance imaging (MRI) 
and computed tomography (CT) imaging [1]. 

Computer-aided diagnosis (CAD) plays a key role in 
assisting radiologists in a more accurate diagnosis. It allows 
to reduce human errors, minimizing user subjectivity and 
workload. Furthermore, its ability to reveal the number of 
lesions, their location and their size is of great clinical 
importance for planning the best treatment [1]. 

There are different methodologies for brain metastases 
detection. Most of them employ spherical tumor appearance 
models and a three-dimensional (3D) cross-correlation [2-5] 
to identify likely positions of BM, making use of brain atlas 
or preprocessing to remove false positives (FP) [2-4]. Other 
authors decided to reduce the number of detected blood 
vessels by applying a contrast-enhanced 3D black-blood 
pulse sequence in which dynamic blood was selectively 
suppressed while stationary tumor contrast remained [5]. 
Other choice is unsupervised change detection based on 
symmetry that searches for the most dissimilar region 
between the left and the right hemisphere in each axial slice, 
but it is only suitable for medium and large BM [6, 7]. 
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Current work presents a 3D template-based matching 
algorithm and a segmentation-based method applied to MR 
brain images with the main objective of identifying a high 
percentage of BM while introducing a reasonably small 
number of FP. 

II. MATERIALS AND METHODS 

A. Patient database and data acquisition 

Nineteen patients (11 men, 8 women, aged 6523 years 
old) were scanned using a 1.5 T MR scanner, with an in-
plane resolution of 1 mm and a slice thickness and separation 
between slices of 1.3 mm. These T1-weighted contrast-
enhanced images were obtained using a spoiled gradient echo 
pulse sequence (SPGR) and a 256×256 matrix size. This 
dataset contained a total of 62 metastases, with a major 
diameter from 2.5 to 44.1 mm (median = 7.75 mm). 

B. Template-based matching detection 

Brain metastases are spheroid-like structures which are 
well-circumscribed and brighter than surrounding anatomical 
tissue on postcontrast MR brain scans. Taking into account 
these morphological features, 3D varying radii templates 
based on [2,8] were created using MATLAB 8.1 (The 
MathWorks, Inc., Natick, MA, USA). These templates were 
modified to be ellipsoidal, hollow and symmetric with respect 
to their center. In contrast, the authors created spherical and 
compact templates with three combinations, depending on the 
intersection between the image and the center of the sphere 
(above, below or exact). Zero padding allowed to find well-
demarcated borders through the inclusion of a uniform 
number of black voxels surrounding the border of the 
template. 

For templates creation, anisotropy of the voxels was taken 
into account through the ratio between slice thickness and in-
plane resolution, ratio. Other parameters were subvoxels, the 
number of neighbor pixels considered to establish the 
intensity of a pixel, and znum, the multiplication of ratio by 
subvoxels. Then, the outer radii of the ellipsoid, 1a , 1b  and 

1c  were defined in millimeters and converted to pixels. All 

the templates had a small inner hole, whose radii 2a  and 2b  

were the quarter part of the corresponding outer radii, and 2c  

a smaller pixel than 1c . The maximum of the three outer 
radii, max_radius, contributed to a parameter related to zero 
padding, N, calculated following (1): 

   .subvoxels·radiusmax_·N )12(      (1) 

Then, two N×N×N matrices were initialized with zeros, 
and ones were placed at the coordinates XCoord, YCoord and 
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ZCoord which belonged to the outer and inner ellipsoid, 
respectively, as defined in (2): 
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Subsequently, the second matrix was subtracted from the 
first matrix and a hollow ellipsoid was obtained, resulting in 
pretemplate matrix. Zero padding was applied to this matrix 
in x, y and z [2,8], increasing the number of slices and leading 
to pretemplate_pad of size xx×yy×zz. 

Reaching the end, a xx/subvoxels×yy/subvoxels×zz/znum 
template matrix was initialized to zero. Then, subvoxels rows, 
subvoxels columns and znum slices were caught from 
pretemplate_pad and mean intensity was placed by rows 
from left to right in each of the slices of template. That was, 
firstly the first row and the first column of each slice, then the 
first row and the second column of each slice and so on until 
the last row and the last column of the last slice were reached. 
Finally, all the black slices were removed. 

Three templates were employed, with following 
dimensions: 6×5×4 mm3, 7×8×9 mm3 and 14×12×12 mm3, 
and 5 subvoxels. As depicted in Fig. 1, the grayscale 
templates had blurred edges because each pixel was the 
average of a set of pixels, simulating the aspect of metastases 
observed under MRI. 

The next step was a 3D cross-correlation between the 
templates and the brain volume. Those pixels whose 
normalized cross-correlation coefficient (NCCC) exceeded a 
threshold of 75% of the maximum were established as pixels 
belonging to a BM. It was selected this 3D feature matching 
parameter because it is independent on the voxel intensity 
values. Its calculation was performed in the Fourier domain 
using a 3D extension of the Lewis’s formula [9]. Although 
initially a detection consisted of several pixels, it was reduced 
to the pixel with highest NCCC. 

It is noteworthy to understand that a 3D cross-correlation 
is not a slice by slice correlation and thus, the obtained 
detections are supposed to be located at the centroid of the 
3D object. Despite this affirmation, employing a NCCC 
threshold of 75% caused that elongated structures were 
detected in several slices because for the algorithm they were 
a succession of ellipsoids. Detections could be true positives 
(TP) or false positives (FP), such as blood vessels. 

 

 

Figure 1. (a) Slices of an ellipsoidal tumor appearance template. (b) 3D 
template representation in gray colormap for visual purposes. The borders 
have a blurred aspect to mimic metastases observed in MRI. 

C. Reduction of false positives 

Firstly, to remove FP outside the patient's brain, the 
images were skull stripped using FSL-BET (FMRIB Centre, 
University of Oxford, Oxford, UK) [10]. It was a tough task 
due to anatomical deviation caused by brain metastases. 
Secondly, a segmentation-based method was applied in 
order to reduce FP inside the patient's brain.  

The purpose was measuring the elongation of the object. 
Previously it was needed to segment the detections in the 
three orthogonal views by means of a level set [11], for 
template detected points to become contours. The selected 
region-based level set could detect objects whose edges 
were not necessarily defined by gradient, and energy was 
minimized using finite differences. The initial seed was a 
circle centered at the point detected by the templates, and the 
region of interest extended as the level set progressed. 

First of all, the lesion candidates were segmented in axial, 
as the images were obtained in this view. Two criteria were 
required: an area up to 500 mm2 and a major distance in x 
and y up to 50 mm. When this latter criteria were not 
accomplished, another region-based level set was employed 
[12] with less spreadable parameters. Final segmentation 
contained one single connected object. After each 
segmentation, the major distance in vertical or horizontal was 
calculated as the difference between the maximum and 
minimum coordinate in x or y axis. Subsequently, with the 
aim to separate metastases from blood vessels it was applied 
erosion followed by dilation to the contours whose ratio 
exceeded 3. 

Axial segmentation was considered as gold truth. Hence, 
true segmentation in sagittal and coronal should not exceed 
more than 50% of respective axial measure and does not 
exceed 1500 mm2. Otherwise, the segmentation was 
performed by the other level set [12] and as a last resort by an 
edge-based level set [13]. If any of the level sets met the 
criteria, the detection was not segmented. The same way as in 
axial, after each segmentation in sagittal and coronal, the 
major distance in vertical or horizontal was calculated. In 
Fig. 2a-c, a segmented metastasis is shown, depicting similar 
major distances. In contrast, in Fig. 2d-f a FP segmentation, 
sagittal sinus, shows different measures. 

After segmentation, distance_ratio was calculated: ratio 
between maximum and minimum of major vertical or 
horizontal distance in each view, following (3). A threshold 
of 2.25 was selected in order to consider a metastatic slice: 
those objects whose ratio was less or equal to 2.25 were 
considered TP, and the rest were considered FP. Afterwards, 
the contours were stored in a binary matrix, and connected 
in 3D to find slices belonging to the same structure. To 
check if a slice was far or not from the threshold, all the 
slices whose ratio was between 2.25 and 2.25·1.3 were 
considered TP at the 3D structure. 

 
 vieweachincetandismajormin

vieweachincetandismajormax
ratio_cetandis      (3) 

In Fig. 2g, it is displayed in blue the slices whose ratio 
between distances was less or equal to 2.25 and thus 
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considered TP; in yellow, the FP changed to TP because 
their threshold was from 2.25 to 2.25·1.3 and colored in red 
the slices whose ratio overcame 2.25·1.3. 

 

 

Figure 2. Metastasis segmentation in cyan: a) axial, b) sagittal and c) 
coronal. False positive segmentation in red: d) axial, e) sagittal and f) 
coronal. This segmentation allowed to calculate the ratio between maximum 
and minimum of the major vertical or horizontal distance in each view. g) 
Segmentations connected in 3D: blue, TP ratio up to threshold; yellow, TP 
ratio between threshold and threshold + 30%; red, FP ratio major than 
threshold + 30%. h) Remained lesion candidates. 

All the slices of the 3D structure were turned to FP if the 
difference between considered TP slices and FP slices 
normalized by the number of slices was greater than one 
third of the number of slices (4) and the majority were FP 
slices (Fig. 2h). It was a conservative strategy that pretended 
to preserve the metastases. 
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          (4) 

III. RESULTS AND DISCUSSION 

Template matching algorithm detected 58 of the 62 
metastases, with a sensitivity of 93.55%. Features which 
allowed four lesions as false negatives (FN) were: excessive 
hypointensity at the center of the metastasis or sharp ring 
shape and small size (around 2.5 mm). The obtained FP rate 
per slice was 0.64 (Table I). This relatively high rate was 
mainly due to the superior sagittal sinus and its terminal 
branches are similar to metastases in both shape and 
intensity. The smallest template often detected choroid 
plexus, internal carotid arteries, basilar artery, internal 
cerebral veins and straight sinus. On the other hand, the other 
templates usually detected sagittal, straight, sphenoid, 
transverse and sigmoid sinus. 

Regarding the method for FP reduction, Fig. 2a-c shows a 
metastatic slice segmentation whose ratio is 1.05, whereas 
Fig. 2d-f is a FP, the sagittal sinus, with a much higher ratio, 
9.77. Blood vessels have a larger major ratio than BM and 
therefore, differentiating between FP and BM. Fig. 2h shows 
3D connectivity algorithm results: there are 3 structures, 2 of 
them TP and 1 FP. The segmentation-based algorithm has 
lead to encouraging results: the FP rate per slice decreased to 
0.15 and only one BM was removed (Table I). 

TABLE I.  OBTAINED RESULTS FOR NINETEEN PATIENT DATABASE 

Measures 
Method 

Sensitivity False positive rate per slice 

Templates 93.55 % 0.64 

False positive 
reduction 

91.94 % 0.15 

 

It is needed the three orthogonal views as, blood vessels 
such as the superior sagittal sinus are almost circular in axial 
slices, as depicted in Fig. 2d, leading a ratio between 
maximum distance in horizontal and vertical close to 1, 
classified as TP. Despite few metastases are attached to blood 
vessels in axial, they are also attached in the other two views 
and they are not removed because the ratio is lower than the 
threshold. Another advantage resides in major distance, 
calculated in horizontal or vertical as the difference between 
maximum and minimum coordinate in x or y axis. This way 
is simpler and faster than other degree of anisotropy 
calculations by means of an ellipse or ellipsoid. 

 As future lines, after applying an algorithm to delimit 
and segment each lesion, it is convenient to calculate more 
exactly how elongated the objects are. One reliable form is 
calculating the degree of anisotropy (DA) in 3D. The fastest 
method is the Ellipsoid of Inertia (EI) [14,15], a graphical 
representation of the tensor of inertia with respect to the 
center of mass. This geometrical shape allows to calculate 
DA as the ratio between its major and minor semiaxis. Fig. 3 
shows the completely segmented BM and FP of Fig. 2, 
whose 3D DA is 1.5 (almost isotropic) and 8.5 (very 
anisotropic), respectively. Since the objects are not yet 
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segmented in all the slices, because they have been solely 
detected in some slices close to the centroid, it makes no 
sense to form a 3D structure. In that case, the minor axis 
would be considered the distance between these few slices 
and the 3D DA would be incorrect. 

 

 

Figure 3. (a) 3D representation of a metastasis (above) and a false positive 
(below). (b) Corresponding Ellipsoid of Inertia with the inertia axes 
displayed in red. 

Ambrosini et al. [2] applied their algorithm to 79 BM 
with a diameter from 3 to 45 mm (median = 7 mm), giving a 
sensitivity of 89.9% and a FP rate per image slice of 0.22. 
Brain segmentation was based on a 3D brain atlas that 
allowed to remove dural venous sinuses and internal carotid 
arteries, the major sources of FP. Our sensitivity is higher 
(91.94% vs 89.9%), with a lower FP rate per slice (0.15 vs 
0.22). On the other hand, Nie et al. [3] employed a dataset 
containing 27 BM smaller than 8 mm in diameter. The 
experimental results showed a sensitivity of 81.5% and a FP 
rate per slice of 0.45. Other template-based method was 
developed by Farjam et al. [4] with promising results: a 
sensitivity of 93.5% and a FP rate of 0.024 with BM less than 
5 mm in diameter. In our database, there are 30 metastases 
greater than 8 mm, so a direct comparison cannot be made 
with the last two methods. Current method is neither 
comparable with the symmetry-based methods [6,7] that 
worked well for medium and large metastases but not for 
small ones. The black-blood pulse sequence applied by Yang 
et al. [5] was beneficial. The authors obtained a sensitivity of 
81.1% and a specificity of 98.2% in a database containing 53 
BM smaller than 6 mm in diameter. 

IV. CONCLUSION 

An algorithm for the detection of metastases on brain 
MR imaging with lower false positives is presented. 
Metastases follow general patterns of three-dimensional 
morphology and signal intensity profiles in MRI and 

therefore can be detected by morphological and contrast 3D 
templates, using cross-correlation and NCCC in frequency 
domain as a quick and precise similarity measure. 

Current results are encouraging as they present a high 
detection rate and a manageable number of false positives. 
Most of the false positives obtained were elongated 
structures as venous sinuses or internal carotid arteries. 
Thus, majority of false positives could be removed 
establishing a threshold for the ratio of their measures in the 
three planes, a fast approximation of the degree of 
anisotropy. Once the lesions will be segmented in all the 
slices, 3D degree of anisotropy in axial could be an ideal 
complement removing false positives. 

This CAD tool serves as a support to the radiologic 
diagnosis by providing the analysis of hundreds of images. 
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