
  

 

Abstract— We present a method of resolving a fine structure 

in a magnetic susceptibility map, which cannot be distinguished 

by the conventional method, by using a densely sampled dipole 

field and by expanding a magnetic field perturbation map. We 

investigate effects of a sampling density of the dipole field on the 

spatial resolution and on obtained susceptibility values. When 

the sampling density is increased, a shape of an otherwise 

undistinguishable fine structure recovers gradually in an 

obtained susceptibility map. Furthermore, a peak susceptibility 

value of the fine structure is slowly getting closer to the correct 

values. 

 

I. INTRODUCTION 

Unusual accumulation of iron is found in a histological 
brain section of neurodegenerative disease such as 
Parkinson's disease[1] and Alzheimer's disease[2]. Since iron 
is a ferromagnetic material, iron accumulation strongly 
enhances local tissue magnetic susceptibility in a brain. Thus, 
iron deposits can be assessed by measuring the magnetic 
susceptibility. If the tissue magnetic susceptibility can be 
quantified, progression of the neurodegenerative diseases can 
be diagnosed in a quantitative manner.  Furthermore, earlier 
diagnosis will be possible if the tissue magnetic susceptibility 
can be evaluated in a smaller region.  

In order to quantitatively obtain a spatial distribution of 
local tissue magnetic susceptibility, a new technique of MRI,  
Quantitative Susceptibility Mapping(QSM), has been 
developed. Under a static external magnetic field, local 
magnetization, which is proportional to the local tissue 
magnetic susceptibility, induces dipole fields to surrounding 
tissues. In MRI, nuclear spins precess about a local magnetic 
field, which is a sum of the external magnetic fields and 
magnetic field perturbations. The magnetic field 
perturbations are integration of dipole fields from a whole 
space and can be measured as phase data of gradient echoes. 
Therefore, in QSM, a magnetic susceptibility distribution is 
calculated by solving nonlocal inverse problem of magnetic 
field perturbations. Since a Fourier transformed dipole field 
has zero values on two conical surfaces, direct inversion is 
prohibited in QSM[3]. To deal with this ill-posed nature of 
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the inverse problem, several methods have been proposed 
such as regularization methods[4] and multiple orientation 
methods[5][6].  

In addition to that it has zero values on the conical surface 
in k-space, the dipole field has a rapid changing nature. The 
dipole field decays with the cube of the distance from the 
origin, and changes its sign according to its direction. 
Therefore, a large change within a small region exists near the 
origin of the dipole field. This rapid changing nature also 
appears in k-space as a Fourier transformed dipole field does 
not decay even at high k value. If a digitally sampled unit 
dipole field is used in QSM, discrepancy from the continuous 
one brings errors to a calculated magnetic susceptibility 
map[7][8]. Moreover, due to limitation of an MRI hardware, 
measured magnetic field perturbations include unavoidable 
partial volume effects. As a result, the calculated magnetic 
susceptibility distribution loses fine details of its structure and 
susceptibility values. The rapid changing nature of the dipole 
field and the partial volume effects of the measured magnetic 
field perturbations complicate the ill-posed inverse problem 
of QSM.  

Although the measured magnetic field perturbation 
cannot be resolved into smaller structures than a spatial 
resolution, the dipole field can be calculated in an 
infinitesimal scale. We have proposed to use a densely 
sampled dipole field for improving a spatial resolution of a 
magnetic susceptibility map. And we have confirmed that a 
fine structure, which the conventional method cannot resolve, 
becomes distinguishable by using a three times densely 
sampled dipole field[9]. Here, we investigate dependences of  
shapes of smaller structures and of susceptibility values on a 
sampling density of a dipole field in our proposed method by 
performing simulations with a 3D Shepp-Logan phantom 
including partial volume effects.  

 

II. METHODS 

 We created a 3D Image of (24)
3
 voxels including partial 

volume effects and used as MRI input data. In the following 

sections, we define matrix size of a 3D Image with n times 

higher sampling density as (24×n)
3
. And the multiplicative n 

is defined as a scaling factor. When we enlarge FOV of the 

3D Image in m times, the matrix size will be written as 

(24×n×m)
3
. 

A. Magnetic Field Perturbation Map Including Partial 

Volume Effects 

A high resolution 3D Shepp-Logan phantom was created 
at the matrix size of (24×9)

3
. There were seven prolate 

spheroids (regions 1~4 and 8~10) and three spheres (regions 
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5~7) inside an outer shell of the region 4 as shown in Fig.1. 
Unlike an ordinary Shepp-Logan phantom, we added extra 
small regions which could not be detected with a low spatial 
resolution. Magnetic susceptibilities of the regions 1~5 
(χ1~χ5) were set to 0.3, 0.2, 0.2, 0.1 and 0.4 ppm, respectively. 
Those of the regions 6~10 (χ6~χ10) were set to 0.5 ppm. The 
outer shell of the region 4 and the outside of the outer shell 
(background) was set to 1.0 and 0 ppm respectively. 

A general idea of creating a magnetic field perturbation 
map is same as in [7][8]. In this study, we utilized an 
analytically derived Fourier transformed dipole field instead 
of a numerically derived one. Here, the analytically derived 
Fourier transformed dipole field ( {  }) is given by  

 {  ( ⃗   )}  
 

 
 

(             )
 

| ⃗⃗ |
 ,                      (1) 

where θ is the angle that z axis of k-space (kz) makes with 
respect to a static external magnetic field [6]. 

The high resolution 3D Shepp-Logan phantom of  (24×9)
3
 

voxels was placed into a central region of a large zero matrix 
of (24×9×3)

3
 voxels, in order to obtain an enlarged magnetic 

field perturbation map. Convolution of the enlarged phantom 
of (24×9×3)

3
 voxels with a dipole field was done in k-space, 

where the analytically derived Fourier transformed dipole 
field of (24×9×3)

3
 voxels were used. The central part of the 

enlarged magnetic field perturbation map was cropped to 
have a matrix size of (24×9)

3
. After replacing to zero value in 

the region of the outer shell and the background, the cropped 
magnetic field perturbation map was

 
downscaled to a matrix 

size of (24×1)
3
 by averaging every 9

3
 voxels to include partial 

volume effects. We used the downscaled magnetic field 
perturbation maps as MRI input data. We prepared three input 
map sets with different angles (θ) to the static magnetic fields. 

B.  Susceptibility Estimations by Using Densely Sampled 

Dipole Fields 

In our proposed method, a densely sampled dipole field of 
(24×n)

3
 voxels were employed to obtain a magnetic 

susceptibility map at the size of (24×n)
3
. The input magnetic 

field perturbation map of (24×1)
3
 voxels was interpolated to 

the size of (24×n)
3
 by using the nearest neighbor algorithm so 

that its high frequency components could be conserved.  

A magnetic susceptibility map of a smaller voxel size 
(1/n)

3
 was evaluated by deconvoluting the analytically 

derived densely sampled dipole field of (24×n)
3
 voxels from 

the interpolated magnetic field perturbation map of (24×n)
3
 

voxels. In this study, eight different scaling factors n=2~9 
were used.  

In the conventional method, a magnetic susceptibility 
map was calculated by using scaling factor n=1. In order to 
have the same voxel size as in the proposed method, the 
estimated magnetic susceptibility map was interpolated to 
larger matrix size of (24×n)

3
 voxels by using the bicubic 

algorithm. 

C.  Susceptibility Estimation 

Since our numerical phantom had no susceptibility 
anisotropy, we employed COSMOS[5] to calculate 
susceptibility distribution by using three angles (θ), -60°, 0° 
and 60°. In order to remove a background field, SHARP 
method[10] was applied. The input magnetic field 
perturbation map of (24×n)

3
 voxels was enlarged to 

(24×n×2)
3
 voxels by the zero filling. Then, to remove a 

background field, the enlarged input perturbation map was 
convolved with a spherical kernel, δ-ρ, which diameter was 
set to 7 voxels. The deconvolution of the input background 
removed perturbation map with the dipole field was done in 
Fourier domain. The analytically derived Fourier transformed 
dipole field was multiplied by the Fourier transformed 

spherical kernel ( (   ))  in a pointwise manner. The 

resulted pointwise product was set to zeros in regions where 
its absolute values were less than 0.14[6]. Susceptibility maps 
were divided by the pointwise product at each orientation in 
k-space. Then, the derived susceptibility maps of three angles 
were averaged in the Fourier domain by weighting their 
values by the absolute value of the pointwise product for each 
orientation so that each measurement made an equal 
contribution. Susceptibility map was evaluated from the 
weighted mean of the derived susceptibility maps, and was 
cropped to (24×n)

3
 voxels. In this study, all calculations were 

performed on MATLAB R2013b. 

 

III. RESULTS 

A.  Comparison of Susceptibility Maps 

Fig.2 (a)-(d) shows center slices of trimmed ideal 
magnetic susceptibility maps of scaling factors, n=1, 2, 4 and 
8. The ideal susceptibility maps have been created from the 
high resolution susceptibility map of (24×9)

3
 voxels by 

resizing the original matrix size to (n/9)
3
. In order to keep an 

image resolution, all maps in Fig.2 have been interpolated by 
using the nearest neighbor algorithm to have a matrix size of 
(24×8)

3
. Although the region 7 cannot be distinguished in the 

ideal map of the scaling factor n=1 (Fig.2 (a)), it can be 
identified in those of the scaling factor n ≧ 2 (Fig.2 (b)-(d)). It 
is difficult to extract a spherical shape of the region 7 from the 
ideal map of the scaling factor n=2, not from those of the 
scaling factors n=4 and 8.  

Fig.2 (e)-(h) shows center slices of susceptibility maps 
obtained by the conventional method with the scaling factors 
n=1, 2, 4 and 8. The susceptibility map of the scaling factor 

Fig.1.  Center slice (z=109) of a high resolution 3D Shepp-Logan 

phantom at matrix size of (24×9)3 . There are ten regions, where each 
magnetic susceptibility (χi) is: χ1=0.3; χ2=0.2; χ3=0.2; χ4=0.1; χ5=0.4; 

χ6~10=0.5; χshell=1.0; χBG=0 ppm. 
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n=1 reproduced the ideal map of the scaling factor n=1 very 
well. As the scaling factor is increased, however, only 
smoothing effects become large. While the region 5 becomes 
to be identified, the region 7 remains to be merged with the 
regions 2, 3.  

Fig.2 (i)-(k) shows center slices of susceptibility maps 
obtained by the proposed method with the scaling factor n=2, 
4 and 8. In the susceptibility maps of the proposed method, 
the regions 5, 8 and 9 are distinguishable from each other. 
Moreover, a boundary of the region 7 appears. As the scaling 
factor is increased, the shape of each region recovers 
gradually although the changing rate is much slower than that 
in the ideal maps. Nevertheless, latticed  patterns artifacts 

exist in all susceptibility maps of the proposed method. 

B.  Comparison of Susceptibility Profiles 

Fig.3 (a)-(c) shows susceptibility profiles at the middle 

horizontal line in the center slice (as indicated in Fig.2 (e)-(k)) 

by the both methods with scaling factor n=2, 4 and 8. The red 

lines corresponds to profiles of the maps of the proposed 

method and blue lines correspond to those of the conventional 

method. A calculated susceptibility of the region 4 has been 

subtracted as a background from each profile in Fig.3. The 

susceptibility of the region 4 of the scaling factor n=2, 4 and 8 

has been determined by averaging obtained values within the 

region 4 where the flat susceptibility (χ4=0.1 ppm) is found in 

Fig.2.  Ideal susceptibility maps and calculated susceptibility maps by the conventional method and by the proposed method. (a)-(d) ideal maps of scaling 

factors n = 1, 2, 4 and 8; (e)-(h) calculated maps by the conventional method of scaling factors n = 1, 2, 4 and 8; (i)-(k) calculated maps by the proposed 

method of scaling factors n = 2, 4 and 8. The image size is adjusted to (24×8)3 voxels, as described in the text. 

a b 

e f g h 

i j k 

c d 

Fig.3.  Susceptibility profiles of the proposed method and of the conventional method with scaling factor n=: (a) 2; (b) 4; (c) 8. Red lines correspond 
to profiles of the proposed method and blue lines correspond to those of the conventional method. 

a b c 
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the ideal maps of scaling factor n=2, 4 and 8 respectively. As 

appeared in the susceptibility maps, the profiles of the 

proposed method have trimodal distribution in the central part, 

which correspond to the region 2, 7 and 3. On the other hand, 

the ones of the conventional method have only bimodal 

distribution. As the scaling factor is increased, the peak value 

of the region 7 of the proposed method increases gradually to 

the ideal value, while the peak value of the conventional 

method remains same. Although susceptibility values 

increase as a whole in the map of the proposed method, the 

increasing rate of the region 7 is higher than those of other 

regions. 
In Fig.4, we have plotted the peak values of the regions of 

the center profiles (Fig.3) versus the scaling factor, n. As can 
be seen, the peak values of the region 2 and 3 are saturated 
around the scaling factor n=3. On the other hand, the peak 
value of the region 7 increases even around the scaling factor 
n=8.   

 

IV. DISCUSSION  

The results obtained in this investigation shows that a 
magnetic susceptibility map can be acquired with a higher 
spatial resolution than a measured spatial resolution of a 
magnetic field perturbation map by using a densely sampled 
dipole field. Moreover, as the scaling factor, n, is increased, 
small structures and magnetic susceptibility values tend to 
recover the ideal state. 

The resolution improvement by a densely sample dipole 
field can be qualitatively understood as following. Since the 
dipole field has the rapid changing nature, a difference of a 
source position in a subvoxel scale produces a large magnetic 
field perturbation difference. Therefore, on a deconvolution 
process, an extra degree of freedom in the source position 
leads to better findings of a correct position. In addition, the 
nearest neighbor method in interpolating a measured field 
perturbation map give equal weight to each subvoxel so that 
probability of choosing a boundary position as a source 
position becomes higher than in the case of the bicubic 
method. 

Although the greater resolution improvement was 
observed in the proposed method by using denser sampling of 
the dipole field, an obtained susceptibility map did not match 
with an ideal map with the same resolution even in densest 

sampling. This may be originated from that due to partial 
volume effects of a measured perturbation map, some of  
higher frequency components of a susceptibility map are 
smeared out and cannot be recovered by denser sampling of 
the dipole field. Furthermore, the partial volume effects of a 
measured map may explain why a concentration of a 
susceptibility value into a small region with a high 
susceptibility value progresses along with a slower rise of a 
susceptibility values in a surrounding region, when the 
scaling factor of a dipole field is increased, as can be seen in 
Fig. 3, 4. Additional susceptibility value, which is recovered 
by denser sampling of the dipole field, partially spreads out 
around a surrounding region due to a partial information loss 
of the source position by the partial volume effects. Even 
though the concentration happens more slowly than in the 
ideal maps, the total susceptibility value of larger region 
approaches to the ideal value more rapidly. This means that 
by using denser sampling of the dipole field we can quantify 
iron deposit more precisely in an original resolution. 

In the proposed method, latticed pattern artifacts are 
observed. It is reasonable to infer that the nearest neighbor 
interpolation method brings the artifacts to measured map and 
that the artifacts persist in a susceptibility map. These 
artifacts could be reduced by improving the interpolation 
method of an input map. 
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Fig.4.  Scaling factor dependence of susceptibility peaks of the center 

profiles. Blue diamonds, red squares and Green triangles correspond to 

the peak values of the region 7, 2 and 3. 
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