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Abstract— An important field in physiotherapy is the rehabil-
itation of gait. A continuous assessment and progress tracking
of a patient’s ability to walk is of clinical interest. Unfortunately
the tools available to the therapists are very time-consuming
and subjective. Non-intrusive, small, wearable, wireless sensors
can be worn by the patients and provide inertial measurements
to estimate the pose of the lower body during walking. For
this purpose, we propose two different kinematic models of
the human lower body. We use an Extended Kalman Filter to
estimate the joint angles and show that a variety of sensors, such
as accelerometers, gyroscopes, and motion capture markers,
can be used and fused together to aid the joint angle estimate.
The algorithm is validated on gait data collected from healthy
participants.

I. INTRODUCTION

Human pose estimation is useful in multiple fields, in-
cluding the film industry, sports bio-mechanics, and physical
rehab. Currently in rehabilitation the initial assessment of
the patient is, for the most part, qualitative and subjective.
The therapists have access to only rudimentary tools such as
goniometry, a technique for measuring a single human joint
angle that cannot be used when the patient is in motion. After
the initial assessment, the therapists need to track patient
progress and make sure that all assigned exercises are done
properly. The latter is particularly difficult since a therapist
may have to supervise multiple patients at a time and often
the patients are assigned exercises to perform on their own.

In this research, we aim to develop a system which
will accurately estimate the patient’s lower body kinematics
(positions, velocities, and accelerations of the joint angles)
using small, non-intrusive inertial measurement units (IMU).
Providing continuous pose measures during gait rehabilita-
tion enables the physiotherapist to extract objective measures
including range of motion, stride length, and number of
strides. In a study comparing different sensors available for
physiotherapy applications, IMUs were shown to be the most
preferable solution due to their compact size and low cost [1].
Also, IMUs allow multiple patients to be in close proximity
since they do not rely on cameras and are not subject to
occlusion problems.

Several existing works have used IMUs to estimate human
joint angles. However, often they focus on a specific joint
or make restrictions on the allowed motion. Bergmann et
al. used accelerometers to estimate the knee joint angle,
but made the assumption that motion was slow enough for
centripetal acceleration to be negligible and only in one

plane. The results were shown to be close to that of a motion
capture system with visual markers, but when the motion is
fast, centripetal acceleration causes large errors [2].

Schwarz et al. proposed a learning approach to estimate
full body joint angles from IMU measurements [3]. They
used a motion capture studio to record joint angles and sensor
data then applied Gaussian Process Regression to learn a
global mapping between sensor measurements and the joint
angles of different activities. To determine which activity
mapping should be used on new sensor data they applied
a multi-class Support Vector Machine. While the results of
this approach are close to those obtained with optical motion
capture, it is not suitable for rehabilitation applications since
per-person training is required to find the mapping between
IMU measurements and joint angles.

Zhou and Hu proposed using Extended Kalman Filter
(EKF) and inverse kinematics to estimate the position of
the elbow and wrist with an IMU attached at the wrist [4].
This approach does not include joint angle estimation from
IMU measurements or a multiple DOF kinematics model.
Lin and Kulić proposed an approach using EKF and a
multiple DOF kinematic model to estimate position, velocity,
and acceleration of the joint angles of one leg. The state
vector of the EKF contained the joint angles, velocities, and
accelerations and the measurement vector was composed of
accelerometer and gyroscope readings provided by sensors
attached above the knee and ankle [5]. This approach is
evaluated on several rehabilitation exercises where the base
frame of the kinematic model is fixed, e. g., seated leg
exercises. When the fixed base frame assumption is valid, the
estimation of joint angles from IMU measures is comparable
to the performance of optical motion capture.

In physiotherapy, recovering the ability to walk indepen-
dently is important to the patients and is a major focus
in post-stroke rehabilitation. A device that continuously
monitors gait throughout the physiotherapy sessions provides
objective measures of gait characteristics that are relevant for
planning patient-specific exercise regimens, evaluating the
efficiency of exercises, and providing feedback on progress
to the patients. The contribution of this study is an extension
of Lin’s method to monitor gait. This requires considering
both legs in the kinematic model and removing the stationary
base assumption. With a moving base, we are able to extract
not only the joint angles but Cartesian trajectories as well,
(e.g. for computing gait symmetry measures, stride length,
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Fig. 1. Two proposed kinematic models for human lover body. Blue line
segments, red boxes, green cylinders, and green line segments, represent
links, sensors, revolute joints, and prismatic joints, receptively. Switching
base model (left) with single DOF at the ankles and knees and three DOF at
the hips. Prismatic-Revolute model (right), the transformation from world
frame and the base frame is described using 3 prismatic and 3 revolute
joints, the hips are modeled with 3 DOF and the knees with 1 DOF.

and foot placement). We propose two different methods to
overcome the limitation of a stationary base. One allows
each leg to act independently, the other works particularly
well with IMUs since it does not allow measurement errors
to cause divergence in position. In section II, we describe
the two different methods for modeling the lower body and
using Extended Kalman Filter to estimate the joint angles
from IMU sensor measurements. Section III summarizes
the experimental results and Section IV concludes with a
discussion of the benefits and drawbacks of the two modeling
methods and our proposed approach.

II. PROPOSED APPROACH

An estimate of the lower body pose is calculated using
data from several IMU sensors. The IMU data is combined
using EKF to determine the joint angles of a kinematic model
representing the lower body.

A. Lower Body Kinematic Model

The human lower body is modeled using branched kine-
matics. One IMU sensor is attached at the waist, knee, and
ankle. In order to overcome the limitation of a stationary
base, we propose two different approaches. The first models
the movement of the base in the world frame using 3
prismatic and 3 revolute joints, while second switches the
base to alternating ankles as the demonstrator walks. The
two different models are visualized in figure 1.

1) Prismatic-Revolute Base Model: A transformation
from the world frame into the kinematic model’s base frame
can be expressed as a translation and rotation in each of the
world axes (x,y,z). Similarly, both linear and angular velocity
and acceleration of the base frame can be represented as
velocity and acceleration in the world axis. Thus, it is
possible to model a moving base kinematic chain as a fixed
base kinematic chain starting with 3 prismatic and 3 revolute
joints in the world frame. To fully encompass lower body
motion we consider the pelvis as the base, the hips and knees

are modeled using three and one revolute joints respectively.
This model allows each leg to act independently and thus
errors in joint angle estimation in one leg should not affect
the other. However it is not bound to the observable region,
accumulating position error in the first three prismatic joints
will cause the position of the base to diverge.

2) Switching Base Model: A different approach to over-
come the limitation of a stationary base is inspired by the
characteristic of gait where one leg is the support leg and
the other leg is the swing leg. The center of the ankle of
the support leg can be considered as the base and the base
switches to the other leg when ground contact of the recent
swing leg is detected. Adding a single revolute joint at the
ankle to the knee joint and the three hip joints allows us
to capture full human motion. This model is bound in the
observable region and has fewer degrees of freedom. Heel
strike detection must be implemented to trigger the base
switching. This is done by looking at the accelerometer
data of the ankle IMUs, a heel strike results in a large
deceleration.

B. Extended Kalman Filter for Kinematic Chain
The Kalman Filter [6] is a popular sensor fusion technique

that estimates the state of a system from noisy observations.
For a linear model, it is shown to be an optimal filter under
the assumption that both measurement and process noise are
zero-mean Gaussian.

For a non linear system,the Extended Kalman Filter is used
which linearizes the equations about the operating point and
the equations are approximated as

zt ≈ z̃t + C(st − s̃t) + vt (1)
st ≈ s̃t + A(st − s̃t) + wt−1, (2)

where A and C are the Jacobians of the state update and
measurement equations with respect to the state s, s̃ is
the noiseless state estimate, z̃ is the noiseless measurement
estimate, vt is the measurement noise, and wt−1 is the
process noise [6]. For our purposes, the state vector consists
of the position q, velocity q̇, and acceleration q̈ of the joint
angles and the measurement vector includes the IMU sensor
readings.

Position q, velocity q̇, and acceleration q̈ of the joint
angles can be described by a continuous function, where
their values at the next time-step are predicted by integrating
the velocity and acceleration terms [5]. Any change in the
acceleration is assumed to be part of the noise:

qt = qt−1 + q̇∆t+ q̈∆t2/2 (3)
q̇t = q̇t−1 + q̈∆t (4)
q̈t = q̈t−1, (5)

where ∆t is the time difference between each measurement.
By considering the sensors as end effectors of the kine-

matic chain, the measurement prediction is done using
forward kinematics and the derivative of the measurement
equation with respect to the state becomes a combination
of standard Jacobians used in robotics [7].The Jacobians for
gyroscope and accelerometer measures are:
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1) Gyroscope: A gyroscope sensor measures the rate of
rotation around its internal frame. Rate of rotation for an end
effector in a kinematic chain can be expressed as w = Jwq̇,
where Jw is the angular Jacobian in the end effector frame.
Thus the observation Jacobian in the EKF is

Jgyro =
[
0 Jw 0

]
. (6)

2) Accelerometer: An accelerometer measures the accel-
eration in the sensor’s frame including gravity. Acceleration
applied to the sensor from the kinematic chain is a com-
bination of centripetal acceleration due to the velocity of
revolute joints q̇ and tangential acceleration due to the joint
accelerations q̈. We can express the combined acceleration
by using the velocity Jacobian, its derivative, and the gravity
vector in the sensor frame:

a = Rsens
0 g + J̇vq̇ + Jvq̈, (7)

where Rsens
0 is the rotation matrix from the world frame into

sensor frame and g =
[
0 0 9.81

]
is the gravity vector.

Taking the derivative of (7) with respect to the state variables
results in an observation Jacobian for the accelerometer

Jaccel =
[
dRsens

0

dq g J̇v Jv

]
, (8)

and dRsens
0

dq can be expressed with respect to each joint qi

through skew symmetric matrices and the rotation matrix to
the joint frame Ri

0:

dRsens
0

dqi
= Ri

0S(k)Rsens
i . (9)

For the Prismatic-Revolute model, EKF can be applied
directly by adding the position q, velocity q̇, and acceleration
q̈ of the three prismatic and three revolute joints describing
the motion of the base to the state vector. For the Switching
Base model the state vector remains as the position q,
velocity q̇, and acceleration q̈ of the joints in the kinematic
model. However when the base is switched (i.e. when a
heel strike is detected) the kinematic chain reverses, because
of this the covariance estimate P of the EKF becomes
invalid. To overcome this problem, we keep track of two
covariance matrices: Pleft for when left ankle is the base
of the kinematic chain and Pright for the right. When a
step is detected, the error covariance P is switched to the
appropriate matrix. It is also important to appropriately select
the covariance for both the process Q and measurement noise
R. While the sensor noise can be measured, there is no
way to measure the process noise and those parameters are
selected by experience. In our experiments, the process noise
at each joint was set as 0.01, 0.1, 1 for position, velocity,
and acceleration respectively. The measurement noise was
set to 5rad/s, 250m/s2 for each axis of the gyroscope and
accelerometer respectively.

III. EXPERIMENTAL RESULTS

To test the accuracy of the proposed algorithm, the esti-
mated pose was compared to motion capture data.

A. Data Collection

Gait data of 5 healthy participants, ages 19 to 25, was col-
lected. The SHIMMER IMUs were used to collect gyroscope
and accelerator measurements. These sensors sample the
on-board Freescale MMA7361L 3D accelerometer and two
InvenSense 2D IDG-500 gyroscopes to obtain acceleration
and rate of rotation about the 3 internal axes [8]. Calibration
software from Shimmer Research based on Parvis and Fer-
raris [9] was used to calibrate the sensors. Motion capture
markers were placed on the ankles, knees, and hips as well
as on each of the IMUs. Due to the limited size of the motion
capture studio it was not possible to capture continuous gait,
thus each participant completed two full gait cycles 10 times.

B. Preprocessing

To successfully run the algorithm we need an accurate
lower body model of the participant. Using the average
distance between motion capture markers during the exercise,
we calculate the hip to hip, hip to knee, and knee to ankle
lengths as well as the IMU offsets for the kinematic model.
Due to human physiology, when each IMU is attached
using Velcro straps it experiences slight rotation away from
the link. We find the 100 sample window with the least
accelerometer variance while the participant is standing still
and calculate the rotation matrix between the IMU’s gravity
vector and world gravity vector g. This rotation matrix is
used to align the IMU’s frame with the link frame in the
kinematic model. Since gyroscopes are known to have drift
present in their measurement we also use the window of
least variance to compute the gyroscope offset for each of
the sensors. Step detection was done manually by looking at
the ankle accelerometer signal, the regions affected by the
heel strikes were replaced with spline interpolation.

C. Results

To compare the joint angles estimated by the proposed
approach with the mocap data, the knee joint angles are
computed from motion capture data by looking at the cross
product of the vectors formed by the offsets between hip to
knee ~a, and knee to ankle ~b markers.

θ = sin−1(
~a×~b
‖~a‖‖~b‖

) (10)

Figure 2 shows the Switching Base model performance at
estimating the knee joint angles for a short walk. The RMSE
error in knee angle for both approaches is shown in Table I.
We also compared the Cartesian positions of the ankles and
knees. Gait features such as stride length and foot placement
can be calculated per step. Thus error was considered as
zero at the start of each step cycle. Due to the difference in
modeling of the legs (independent in the Prismatic-Revolute
model and dependent in the Switching Base model), it was
important to consider the support and swing leg performance
separately. Because the ankle is bound in the Switching
Base model, noise in the IMU measurements cannot greatly
affect the support leg. However due to the dependence of
the legs the swing leg’s position error is increased. The

2312



119 120 121 122 123 124 125 126

0

0.5

1

Right Knee
A

n
g

le
 (

ra
d

)

 

 

EKF
MoCap

119 120 121 122 123 124 125 126

0

0.5

1

Left Knee

Time (s)

A
n

g
le

 (
ra

d
)

 

 

EKF
MoCap

Fig. 2. Comparison between the knee joint angles over two full gait cycles
estimated from the motion capture studio (red) and by the Switching Base
model EKF (blue).

joint angle and position estimation root mean squared errors
are summarized in table I. As expected, we see that the
Switching Base model estimates the position much better
for the support leg and the Prismatic-Revolute model slightly
outperforms in estimating the position of the swing leg.

D. Sources of Error

A major source of error in our experiment can be attributed
to the sensors and their attachment to the participant. The
IMUs are secured using elastic straps, during a heel strike the
strap allows the knee and ankle sensors to continue rotating
forward. The EKF estimates this as rotation at the hip joint
and causes a characteristic under-step. Other sources of error
include modeling the joints at marker locations instead of
anatomically correct locations and excluding the ankle to
heel distance for the Switching Base model.

TABLE I
ROOT MEAN SQUARED ERROR OF KNEE JOINT ANGLE (ANG) AND

CARTESIAN POSITION ESTIMATION USING THE TWO PROPOSED

KINEMATIC MODELS. THE CARTESIAN RESULTS ARE SHOWN FOR KNEE

(K) AND ANKLE (A) OF EACH LEG (LEFT (L) AND RIGHT (R)) FOR THE

SUPPORT (SU) AND SWING (SW) PHASE

Switching Base Model Prismatic-Revolute Model

L K Ang 5.03±1.27 (deg) 5.64±2.12 (deg)
R K Ang 6.20±1.48 (deg) 6.46±2.37 (deg)

x (cm) y (cm) z (cm) x (cm) y (cm) z (cm)
L A Su 1.3±1.0 0.3±0.1 0.6±0.3 10.5±1.7 5.6±1.4 3.1±1.4
L A Sw 9.4±2.5 11.9±2.3 9.5±1.3 9.1±3.7 8.5±2.2 8.9±1.9
R A Su 1.0±0.5 0.3±0.1 0.9±0.4 10.6±2.5 5.4±1.6 4.1±0.5
R A Sw 9.9±3.8 8.2±2.2 5.3±1.2 8.1±3.4 5.3±1.6 6.5±1.6
L K Su 3.4±1.6 1.3±0.4 0.9±0.3 5.5±0.7 3.6±0.7 2.4±1.0
L K Sw 6.7±1.7 10.3±2.6 5.2±0.6 7.2±2.7 6.4±2.8 4.0±1.1
R K Su 3.3±1.1 4.1±1.4 1.4±0.6 5.6±0.7 3.4±1.0 2.6±0.9
R K Sw 6.5±2.6 4.4±1.2 2.3±0.6 5.3±1.9 3.3±1.2 2.0±0.9

IV. DISCUSSION AND CONCLUSION

We presented two different approaches for using kinematic
chains to model the human lower body and described how
EKF can be used to estimate the joint angle positions,

velocities, and accelerations for these models. The first
approach describes the transformation from world frame to
the base frame as three prismatic and revolute joints. The
second approach relies on switching the base of the kinematic
model when a heel strike is detected.

A major benefit of the first approach is that the movement
of the base is built into the model. Thus, it is only necessary
to estimate the joint angles, velocities, and accelerations
to fully describe how the patient is moving. However, the
extra joints needed to represent the moving base introduce
additional uncertainty. Also, this model is not bounded so if
there is an error in velocity or acceleration in the first three
prismatic joints and integration is used to position the model
in 3d space the errors will quickly accumulate causing the
model to move out of the observable region. This can be
overcome by including an additional position sensor. In our
experiments, we added an a optical motion capture marker
attached to the waist IMU as part of our measurement vector.

Since the second approach binds the model to the floor,
measurement errors do not cause it to exit the observable
region and it provides more accurate results when only IMU
sensors are used avoiding the need for additional position
sensors. This model also has less uncertainty due to a smaller
number of degrees of freedom. The main drawback is that a
step detection algorithm needs to be employed.

Future work will include improving the process model for
a specific exercise, learning the EKF noise parameters, and
evaluation on patient data.
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