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Abstract – In this work, we introduce a number of models 

for human circadian phase estimation in ambulatory conditions 

using various sensor modalities.  Machine learning techniques 

have been applied to ambulatory recordings of wrist 

actigraphy, light exposure, electrocardiograms (ECG), and 

distal and proximal skin temperature to develop ARMAX 

models capturing the main signal dependencies on circadian 

phase and evaluating them versus melatonin onset times.  The 

most accurate models extracted heart rate variability features 

from an ECG coupled with wrist activity information to 

produce phase estimations with prediction errors of ~30 

minutes.  Replacing the ECG features with skin temperature 

from the upper leg led to a slight degradation, while less 

accurate results, in the order of 1 hour, were obtained from 

wrist activity and light measurements.  The trade-off between 

highest precision and least obtrusive configuration is discussed 

for applications to sleep and mood disorders caused by a 

misalignment of the internal phase with the external solar and 

social times.   

I. INTRODUCTION 

Human beings possess a biological clock which 
influences most, if not all, physiological processes and some 
behavioral processes.  Environmental cues, known as 
zeitgebers, provide input to the circadian system enabling it 
to entrain to the solar cycle.  The most influential of these 
zeitgebers is light [1,2].  The master circadian clock is 
located in the suprachiasmatic nuclei (SCN) of the brain.  
Because the state of the circadian clock cannot be assessed 
directly in humans, one must rely on indirect measures that 
are closely coupled to the activity of the clock itself.  Core 
body temperature (CBT) and melatonin levels are two well-
established markers of the phase of the SCN [3], each 
affected by different masking effects.  CBT is prone to non-
circadian variations caused by activity, food intake, sleep, 
and other environmental or behavioral influences, while 
melatonin concentrations are affected by exposure to bright 
light [4].  Given its relative resilience to masking effects, the 
dim light melatonin onset (DLMO) is the most practical 
indicator of circadian phase which can be measured from 
saliva samples taken, either at home or in a clinic, in the 
evening with a typical accuracy of 15 minutes [3].  DLMO is 
defined as the time at which the concentration of melatonin 
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(released by the pineal gland) reaches a certain threshold, in 
this case 3pg/ml from saliva samples [5].  With at least 10% 
of all insomnias caused by circadian rhythm misalignments 
[6], determining circadian phase is a valuable tool in 
diagnosing and scheduling of treatment of sleep disorders, 
mood disorders such as seasonal affective disorder (SAD), as 
well as for fatigue and alertness monitoring. 

Recent circadian phase estimation models have revolved 
around non-invasive physiological signal modalities such as 
heart rate and skin temperature.  The types of models have 
ranged from simple feature-based heuristic decision to more 
complex mathematical algorithms.  New circadian phase 
features, have been proposed by Ortiz-Tudela et al. and 
Bonmati-Carrion et al., consisting of either a combination of 
skin temperature, activity, and posture (TAP) [7], or derived 
solely from wrist skin temperature (WTiO) [8], respectively.  
Two mathematical models have also been recently proposed 
by Kolodyazhniy in 2011 and 2012, using not only six skin 
temperature locations but also light exposure and motion.  
The first model used linear regressions [9] while the second 
one incorporated a neural network and made no use of 
motion [10].  Concerning the heart rate signal, in 2013 we 
presented a compact autoregressive moving average with 
exogenous inputs (ARMAX) model which uses inter-beat 
intervals and light exposure to estimate circadian phase [11].  
We searched for further improvements of this ARMAX 
model by using different heart rate derived features, skin 
temperature, and different model structures.  In some cases 
we also tried expanding upon previously presented models, 
and applying it to different signal modalities.  This has 
resulted in an array of possible models with varying levels of 
complexity and differing accuracy when compared to the 
gold standard of DLMO. 

II. METHODS 

Ambulatory ECG, actigraphy, and skin temperature 
recordings from 16 subjects were processed and used in 
various models to estimate circadian phase.  Subjects were 
healthy without pulmonary, cardiac or sleep disorders, not 
taking medication, non-smokers, consumed less than 3 units 
of alcohol per week, less than 350mg of caffeine per day, 
and had not taken part in shift work or travel across time 
zones in the three months prior to the study.  Actigraphy was 
collected over two weeks, while ECG and skin temperature 
were recorded continuously over 30 hours each week.  
Evening saliva samples were collected in the evenings 
corresponding to the ECG/skin temperature recording 
periods.  See Figure 1 for the study protocol.  The accuracy 
of the model outputs were compared to DLMO values 
calculated from salivary melatonin levels.   
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Figure 1. Study protocol.  Two consecutive weeks of actigraphy, two ECG 
and skin temperature recordings for 30 hours each week, and salivary 
melatonin levels during each of those recording periods. 

The ECG recordings were collected with a Nexus-10 
(Mind Media BV, Herten, The Netherlands) at 256Hz using 
a standard 3-lead configuration.  Activity levels and light 
exposure were measured using an Actiwatch Spectrum 
(Philips Respironics, Pittsburgh, USA).  Skin temperature 
was measured at nine body locations using iButtons (Maxim 
Integrated, San Jose, USA) and shielded from external 
temperature by means of reflective isolating adhesive disks.  
See Figure 2 for sensor placement.  Saliva was collected 
using Salivettes (Sarstedt AG&Co, Nuembrecht, Germany) 
under dim light conditions at home, assisted by blue light 
filtering glasses (LowBlueLights, Photonic Development 
LLC, Walton Hills, USA).  The saliva samples were 
analyzed using the Buehlmann Direct Saliva Melatonin RIA 
(Buehlmann Laboratories AG, Schoenenbuch, Switzerland).   

For training the prediction models, the inputs consisting 
of various signal modality combinations, have been median-
filtered, and normalized.  More detailed information on the 
processing of the signals and examples of the time series can 
be found in [11].  For each subject, the output signal was a 
cosine wave coded with the DLMO as the phase shift, as 
shown in equation 1.   

  (1) 

As an extension of the previously proposed ARMAX 
model which used RR intervals and light exposure to obtain 
the person’s circadian phase [11], spectral and temporal 
heart rate variability (HRV) features calculated in 5 minute 
windows were used as input signals.  New ARMAX models 
were trained and evaluated using the HRV signals as 
replacement signals of the RR intervals.  The data was 
randomly split into a training subset and a validation subset.   

 

Figure 2. Sensor placement.  Nine iButtons were placed as shown here by 
solid circles.  The ECG was measured using the standard configuration 
shown by striped circles.  Activity and light were measured at the wrist. 

To obtain one model for each signal modality combination 
with a single set of coefficients, the best model configuration 
was found using the leave-one-out-cross-validation technique 
on the training subset.  The performance of each model was 
then tested using the validation subset consisting of seven 
subjects. The ARMAX model has the following structure: 

 . (2)  

Where u(t-nk) are the delayed inputs, y(t) is the output, e(t) is 
the noise model, and the A-C variables are the model 
coefficients as defined in equations 3-5 below. 

  

  (3) 

  (4) 

  (5) 

The spectral HRV features explored were the low 
frequency component (LF, 0.04-0.15Hz), high frequency 
component (HF, 0.15-0.4Hz), and the ratio of the two 
(LF/HF).  The temporal features of interest were the standard 
deviation of the normal beats (SDNN), the root mean square 
of successive differences (RMSSD), and the proportion of 
the number of pairs of successive normal beats greater than 
50ms to the total number of normal beats (pNN50).  In 
addition to the spectral and temporal HRV features, new 
processing schemes of the activity have been implemented 
that emphasize the sleep/wake schedule of the subject.   

To explore alternative signal modalities which can be 
measured in ambulatory conditions, skin temperature from 
the 9 previously mentioned body locations was considered.  
Not only were individual skin temperature locations used, 
but also the distal-proximal gradient (DPG) [12].  These 
signals were used to train and evaluate new ARMAX models 
of similar structure as the model presented with RR intervals 
and light.   

Bonmati-Carrion et al. have presented a skin temperature 
feature measured at the wrist called the WTiO [8].  We have 
adapted this feature and applied it to RR intervals.  When 
adapting this feature to RR intervals, the 35% threshold 
proposed by Bonmati-Carrion et al. was modified to fit with 
the rise in the onset of RR intervals, which can be expected 
to be different than for wrist temperature.  Through statistical 
learning, the threshold of 40% was found to be the 
corresponding increase onset for RR intervals.  Given this 
threshold and the same methodology presented by Bonmati-
Carrion et al., the new feature was used to predict the DLMO 
directly.   

Furthermore, an ARMAX model was derived which used 
only activity levels and light exposure as measured from an 
Actiwatch Spectrum.  Due to the design of the protocol, we 

2279



  

were able to estimate circadian phase daily over a period of 
two weeks.  However, since DLMO was only collected at the 
beginning of each week, the accuracy of the estimates could 
only be assessed for the days of the saliva sampling.   

Due to signal quality, only 14 of the 16 recordings could 
be used for extracting the temporal and spectral HRV 
features, as well as the skin temperature signals.  The RR 
intervals, activity, and light signals from all 16 recordings 
could be used for the rest of the modeling approaches. 

III. RESULTS 

Prediction errors have been defined as the difference 
between the expected DLMO value and the model output, 
and presented as the mean±standard deviation (SD) in 
minutes.  Note that in this case, the mean is a bias or 
calibration factor, while the SD is the real measure of 
precision which can be expected from each model.  A 
summary of all models can be found in Table I.  The models 
are sorted in decreasing order of accuracy as defined by the 
standard deviation of the error.   

The use of spectral and temporal HRV features in 
conjunction with the processed activity signal resulted in the 
most accurate circadian phase estimates.  In the spectral 
domain, the high frequency (HF) feature was the most 
accurate with an error of 17±28 minutes (R=0.847, 
p=0.016), while in the temporal domain the standard 
deviation of normal beats (SDNN) produced the most 
accurate results with an error of 13±32 minutes (R=0.758, 
p=0.048).  Using the modified activity processing and RR 
intervals, the accuracy of the phase estimates presented an 
error of 4±34 minutes (R=0.771, p<0.01).   

The single skin temperature location that produced the 
most accurate results when paired with other modalities such 
as activity or light, was the temperature at the upper leg with 
an accuracy of 73±38 minutes (R=0.79, p=0.034).  
Furthermore, the DPG signal was used in the same manner 
and produced estimates with an error of 19±70 minutes 
(R=0.839, p=0.018).   

Using only the activity and light inputs with the ARMAX 
model structure produced errors of 21±59 minutes (R=0.525, 
p=0.022).  Lastly, the increase onset feature of RR intervals 
led to prediction errors of 98±72 minutes (R=0.511, 
p=0.072).  This was the only model which made no use of 

TABLE I.  SUMMARY OF RESULTS 

Input Signals 
Error Mean±SD 

(minutes) 

Pearson’s 

R 
P Value 

Activity+HRVHF 17±28 0.847 0.016 

Activity+HRVSDNN 13±32 0.758 0.048 

RR intervals+activity 4±34 0.771 <0.01 

Upper leg+activity 73±38 0.790 0.034 

RR intervals+light 2±39 0.712 <0.01 

Activity+light 21±59 0.525 0.022 

Activity+DPG 19±70 0.839 0.018 

RR intervals onset 98±72 0.511 0.072 

the ARMAX structure, as it was directly calculated and 
evaluated in reference to the DLMO.   

IV. DISCUSSION 

Taking the model with RR intervals and light as the 
baseline, all newly trained models were compared to it in 
terms of accuracy and invasiveness.  All signal modalities 
mentioned here were used both individually and coupled 
with other modalities.  In general, it was found that the use of 
a processed activity trace which emphasizes the sleep/wake 
cycle is a better complimentary signal than light when used 
in conjunction with either heart rate features or skin 
temperature features.  The reason for this could be in the way 
the light data is collected.  Combining the fact that the light 
sensor is located at the wrist and that the data was collected 
during the winter, the “sleeve effect” (ie. shielding of light 
sensor by clothing) was a common issue.  The information 
that is found in a person’s sleep/wake cycle can give a good 
indication of the state of the circadian clock.  However, this 
is mostly true for healthy people that are well-entrained.  It 
would be interesting to determine whether the combination 
of a signal modality such as heart rate or skin temperature, 
coupled with the sleep timing information, would still result 
in accurate phase estimates in a pathological population with 
circadian disruptions.   

The ARMAX models making use of heart rate features as 
inputs have produced the most accurate estimates of 
circadian phase.  Heart rate and HRV features, both temporal 
and spectral, are known to follow a circadian pattern [13].  
The use of the HF feature from the HRV produced the most 
accurate results overall.  Figure 3 shows a plot of the 
expected DLMO versus the predicted DLMO for the 
validation data subset.  The HF is said to represent the 
parasympathetic activation of the autonomous nervous 
system, which is circadian modulated [14].  Furthermore, the 
model which uses RR intervals and activity is not only more 
accurate than the baseline, but also does not present the 
problem of sensor occlusion.  Algorithmically, the model is a 
compact third order ARMAX model, making the 
implementation feasible and transparent.  For this setup, the 
main disadvantage is the need for two separate devices: one  

 

Figure 3. Linear regression of the best performing model using activity and 
the high frequency HRV feature with an error in minutes of 17±28 
(mean±SD) and a Pearson’s R value of 0.847.  The heavy solid line shows 
the linear regression of the phase estimates, the heavy dashed line shows 
the ideal line, the secondary dashed lines show the 30 minute and 1 hour 
errors departing from the ideal line.  
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to measure the ECG and one for actigraphy. Having the heart 
rate and activity measured by a single unobtrusive device, 
would make this model superior to any of the models 
presented here in every respect.    

The use of a heart rate monitor over long periods of time 
has not been favored due to the burden of gel electrodes and 
wires on the patient.  Nonetheless, Holter ECG monitors 
have been standard protocol for numerous diagnostic and 
monitoring procedures, often for days or weeks at a time.    
The fact that only 24 hours are required makes the burden on 
the patient significantly low.  From the various data 
collection studies that we have carried out, no patients have 
had negative experiences or complaints.  Nevertheless, the 
monitoring of heart rate or heart rate variability features can 
be done in an even less invasive manner through the use of 
recently developed optical sensors that do not rely on gel 
electrodes or straps.   

Another model that resulted in more accurate results used 
skin temperature measurements at the upper leg, together 
with activity and light information from an Actiwatch.  Even 
though the nine skin temperature locations were analyzed 
individually with activity alone, light alone, and the 
combination of activity and light, it was only when 
considering all three signals together that the better results 
were achieved.  In this context, this approach has the 
disadvantage that it requires at least two devices, an iButton 
and an actimeter, from which three signal modalities are 
used.   

Perhaps the simplest approach is the model that uses only 
activity and light recordings from an Actiwatch device.  This 
algorithm is able to estimate circadian phase on a daily basis 
from one device using a compact ARMAX model.  The 
accuracy is one of the lowest with a standard deviation of the 
error of 59 minutes.  Even though the accuracy was not very 
high, the invasiveness of actigraphy measurements is very 
low compared to other signal modalities.  One of the 
problems that can be faced with this kind of measurement is 
the occlusion of the light sensor, typically by the person’s 
sleeve.  However, it has the advantage of only requiring a 
single wrist-worn device for data collection.   

Unfortunately, the RR interval increase onset feature was 
not able to produce phase estimate within one hour.  For our 
applications, circadian estimates with errors greater than one 
hour fail to serve a valuable purpose, regardless of their 
simplicity or practicality.  A limitation of the current study is 
the lack of wrist temperature measurements, which, given the 
recent publications, could have been beneficial.  

V. CONCLUSION 

Considering the usual trade-off between simplicity and 
accuracy, we have presented a range of solutions for phase 
estimation models that can be used in different real-life 
scenarios.  It is worth noting that all these models rely on 
only 24 hours of data, making them already practical 
alternatives to previously proposed circadian phase 
estimation approaches.   

We define a model as “simple” when a minimum number 
of sensors or devices are required and when the algorithms 
can be implemented straightforwardly.  The simplest model, 
which still yielded phase estimates within one hour, was the 
ARMAX model based on actigraphy signals.  Activity and 
light exposure were measured using an Actiwatch Spectrum, 
making it non-invasive and in line with current 
chronobiology protocols.   

We evaluated the accuracy of the models by comparing 
the model output to the DLMO as reference.  The standard 
deviation of the differences gives an indication of the 
accuracy that can be expected when using the different 
models.  So far, the most accurate results have been obtained 
from HRVHF and activity levels, using two distinct signal 
collection devices.  This increases the complexity of the 
current solution and motivates further work towards 
improved sensor technology and algorithmic performance.   
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