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Abstract— This paper presents a computationally efficient
QRS detection algorithm for wearable electrocardiogram
(ECG) applications based on dual-slope analysis. In general,
ECG signals of arrhythmias are pseudo-periodic and
contaminated with noises like the patient's contraction muscles,
respiration, 60 Hz interference and other types which impede
correct QRS detection. To resolve this problem, in this paper, a
technique is presented which is based on two slopes on both
sides of a peak in ECG signal. Based on these slopes, a variable
measuring steepness is developed and R peaks are detected.
The algorithm was evaluated against MIT/BIH arrhythmia
database and achieved 99.38% detection rate. This method was
compared with one of the recently developed dual-slope based
QRS detection methods. The results showed that the proposed
method has 12.48 times faster runtime than the old method.

I. INTRODUCTION

A dramatic growth of interest for wearable technology
has been fostered by recent technological advances in
sensors, low-power integrated circuits and wireless
communications [1]. This interest originates from the need of
monitoring a patient over extensive period of time. For
cardiac patients, wearable heart monitoring sensors have
already become a life-saving intervention ensuring
continuous monitoring during daily life. Therefore, it is
essential for an accurate diagnosis of heart patients. Patients
can be equipped with wireless, miniature and lightweight
sensors. The sensors temporarily store physiological data and
then periodically upload the data to a database server [2].
These recorded data sets are then analyzed to predict any
possibility of worsening patient’s situation or explored to
assess the effect of clinical intervention. To obtain accurate
response with less computational complexity as well as long
battery life time, there is a demand of developing fast and
accurate algorithm and prototypes for wearable heart
monitoring sensors. A computationally efficient QRS
detection algorithm is indispensable for low power operation
on ECG signal.

In need of detecting QRS complex, most of the early
works were proposed based on derivatives of ECG signal [3].
They can be easily implemented with high computational
speed. But owing to the inherent variability in ECG, these
methods are highly affected by large derivatives of baseline
noises [4]. Algorithms based on neural network (NN) [5]
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showed relatively robust performance against noise but
requires exhaustive training and estimation of model
parameter. On the other hand, wavelet based methods [6]
have the choice problem of mother wavelet. Hence, none of
these methods is suitable for giving a long battery
performance in wearable devices with high accuracy.
Recently, Wang et al. proposed a novel dual slope QRS
detection algorithm [7] which has less computational
complexity as well as high accuracy. Considering that the
width of the QRS complex is relatively fixed, in range of
0.06-0.1 sec [8], this algorithm is based on the fact that the
largest change of slope usually happens at the peak of QRS
complex. The hardware requirement is also low. However,
the method has a set of time consuming slope calculations on
both sides of each sample. To avoid such time consuming
slope calculation, only one sample on each side can be
highlighted. By taking advantage of the fact that
multiplication of the left and right hand side slope should
give us a very high value in QRS complex, in this paper, a
new method to detect QRS complex is developed and
presented. The proposed method is faster with almost the
same accuracy.

This paper is organized as follows. In section II, we
discuss the details of Wang et al. dual-slope based algorithm
for QRS detection. The proposed new approach is discussed
in section III. In section IV, evaluation and comparison of
both algorithms are given. Concluding remarks are drawn in
section V.

II. DUAL-SLOPE QRS DETECTION ALGORITHM

Typically, the Q, R and S are three deflections which
depict a single event and occur in a rapid succession in ECG
signal. Starting from Q wave, a down ward deflection, R
wave follows with steepest upward deflection and S wave is
any downward deflection after the R wave. The time taken by
this event is relatively fixed, in the range of 0.06-0.1 sec.
Hence, if we calculate the slope of straight line between two
samples in ECG signal which are half of the width of QRS
complex away from each other the largest values of slope
should be found in QRS complex. To consider a signal
section as QRS complex, three criteria are defined to check
steepness, shape and height of the signal. If all the criteria are
satisfied the local extremes are searched in order to locate R
peak. Based on this idea, Wang et al. developed their dual-
slope QRS detection algorithm.

Considering the fact that the half of the width of QRS
complex is in the range of 0.03-0.05 sec, the processing of
sample begins by calculating all slopes between the current
sample and the samples 0.03-0.05 sec away on both sides.
The maximum and minimum slopes from each side are then
calculated with signs. The slope difference is obtained
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subtracting the maximum slope of one side and minimum
slope of other side. A variable Sg;¢ ¢ mayx is defined by taking
the maximum value of slope difference. As the wearable
devices are for heart patients, the range is extended to 0.027-
0.063 sec to increase the sensitivity for abnormal heart beats.

The equation of calculating the maximum and minimum
slopes on both sides and the variable measuring steepness
Saiffmax are given below:
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where f; is the sampling frequency, a and b are the nearest
integers of 0.027/, and 0.063f; respectively and 2" is the n"”
sample in ECG signal.

An adaptive preset threshold is defined as ©4;r which
must be updated according to average value of Sgiffmax Of
previously detected 8 peaks. Sgiff mqr must be larger than
Og4ifs to satisfy the first criteria. The rules for updating are
given below:

7680 . 20480
O4irr = if S,pe >
dif f fs ave fs
7680 12800 20480
Ouirr = f < Sgve < 6
aif f fs 1 fs ave fs (6)
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To avoid false high values of Sg;ff max causing from flat
slope on one side and steep slope from other side, another
criterion is introduced to check the shape. QRS complex
should have a ramp like shape on both sides at an R peak. So
the sign of the slope on both sides should be opposite and the
value should be grater then a minimum value. The conditions
are:

Smin = min(|SL,max|' |SR,min|) > Opin and

59M(Stmax) = — 5gn(Skmin)
(if Simax — Skmin > Sromax — Simin)s (7
Smin = min(|SRymax|, |SL,ml-n|) > O,in and

sg(Spmax) = = $91(SLmin)
(if Skmax — Sumin > Simax — Skmin)s (8)

where the value of 0,,,;, is 1536/ f;.

The third criterion is based on the height of the slope. For
noise and other sharp waves, we have high values of slope
but the heights of the slopes are not as high as in QRS
complex. So checking the height will eliminate the possibility

of detecting such unwanted peaks. Therefore, the third

condition is:
Hoyr > Hgpe X 0.4 9

where H_,, is the height of current slope and H,,, is the
average slope height of previous 8 detected peaks. If all the
criteria are satisfied then we look forward to find the local
extremes in that signal section followed by adjustment to
avoid multiple detections within one section. The one with
large value of Sy;ff mqyx is considered as the R peak.

III. THE PROPOSED DUAL-SLOPE QRS DETECTION
ALGORITHM

To find the slope difference, a set of slopes needs to be
calculated on both sides for each sample which is time
consuming. Instead of highlighting all the samples from
0.027 to 0.063 sec, only one sample between these two points
can be focused to calculate the slopes on both sides. As R
peaks usually have very steep slopes, multiplying both slopes
rather taking difference gives us higher values at R peaks in
QRS complex. Based on this idea, a new dual-slope QRS
detection algorithm is proposed.

In order to get a high value of slope at R peaks, a sample
closer to current sample should be highlighted on both sides.
Instead of taking a set of points we choose only one sample
0.027 sec away from current sample and calculate the slopes
on both sides. The equations to calculate the slopes are:

7@ _ Z—(a—k)
Sieft = — x
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SRight = ——k

By multiplying S;.r¢ with Sgigp, for each sample, our
new steepness measuring variable S,,,;; is evaluated as
follows:

(10)

(11

(12)

To consider a sample as an R peak, the sign of slope on
both sides should be opposite, i.e.,

Smuie = Sleft X Sright

Sgn(sleft) = _Sgn(sright) (13)

The value of S,,,,,;; is then compared with a fixed preset
threshold value 0,,,,,;¢, i.€.,

Smult > emult (14’)

where the value of ©,,,;; is 18000/f; and f; is the sampling
frequency of ECG signal. The value of 0,,,,;:was selected by
trial and error to get optimal result.

If all the conditions are met, local extremes are searched
in current signal section to determine the location of R peak.
If two detections are too closed to each other, the one with
large value of S,,,,;; is retained as an R peak.

By taking one sample on each side and multiplying those
with each other, the time consuming calculation of a set of
slopes followed by searching maximum and minimum slopes
is eliminated which makes it even faster and less computable.
A flow chart of the proposed dual slope algorithm is given in
Fig. 1.
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\L ECG Samples

regardless of baseline drift or signals with large T waves the
QRS complex can be accurately detected.

Calculate Sgigp; and Syef¢ TABLE L PERFORMANCE OF THE ALGORITHMS USING THE MIT/BIH
¥ DATABASE
Calculate S,,,;¢ Dual-slope algorithm[7] [New Dual-slope algorithm
Ignore (based on maximum slope (based on slope
sample and difference) multiplication
process next Tape |Total | FN | FP | ER T FN| FP | ER T
one (%) | (sec) (%) | (sec)
100 2273 2 0 0.09 |20.55 2 0 0.09 | 1.44
Smute > Omute 101 | 1865 | 0 | 4 | 021 |2050] 0 | 4 | 021 | 16
SIGN(Siee) = —SigN(Signe) 102 2187 0 0 0.00 |2041 | 10 0 0.46 | 1.35
103 2084 0 0 0.00 |20.57 0 0 0.00 | 1.62
104 2229 0 35 1.57 |20.47 0 59 2.65 | 1.38
105 2572 1 72 2.84 120.99 1 82 323 | 1.85
Search for local extremes 106 |2027 [ 4 035 [2070] o | 8 [039]165
107 2137 3 0.14 |20.68 4 0.37 | 1.42
108 1774 | 31 23 3.04 12042 | 55 53 6.09 | 143
109 2532 4 1 0.20 |20.76 5 1 0.24 | 1.87
Multiple detections? 111 [2124 | 2 | 2 | 019 [2089| 2 | 1 | 0.14 | 1.44
112 2539 0 0 0.00 |20.75 0 2 0.08 | 1.62
Eliminate extra peak 113 | 1795 | 1 | 0 | 006 [2057| 1 | 0 | 0.06 | 1.54
| 114 1879 3 1 0.21 |20.71 1 0 0.05 | 1.68
115 1953 0 0 0.00 |20.73 0 0 0.00 | 1.64
Update threshold 116 2412 5 | 2 0292083 3 | 0o [ 012 [1.84
117 1535 3 0 0.20 |20.62 0 1 0.07 | 1.44
Figure 1. Block diagram of the proposed new dual-slope algorithm. 118 | 2278 0 0 0.00 2058 0 2 0.09 | 1.61
119 1987 0 0 0.00 |20.66 0 0 0.00 | 1.67
IV. RESULT AND DISCUSSION 121 1863 0 2 0.11 |20.62 0 2 0.11 | 1.57
Both the algorithms are evaluated using MIT/BIH 122 [2476 ] 0 | 1 | 004 12088] 0 | 0 | 0.00 )18
arrhythmia database [9] under MATLAB environment on a 123 [1518] 0 [ ! ]007)2072) 0 [ 1 ] 007|156
same computer. It is a standard database with 48 half-hour 124 J1619] 1 [ 2 J019)2073] 0 [ 2 |0.12 |16l
two channel ECG recordings. These recordings are sampled 200 ) 2601 | 10 | 30 | 1.54 {2067 ] 4 | 47 | 1.96 |1.76
at 360Hz and have 11 bit resolution over 10 mV. 201 ) 1963 [ 51 | O | 2.60 |20.75| 38 | 0 | 1.94 [1.55
. 202 2136 1 0 0.05 120.78 3 0.14 | 1.71
To analyze the pc?rformance, we evaluate.d false negative 203 12050 1 3 179 [ 275 120021 2 167 | 232 [ 184
(FN) and false positive (FP). A false negative (FN) occurs 505 1265 T o T2 Toos 2071 > To11 1359
when algorithm fails to detect an actual QRS complex quoted 507 T1s00 T 20 135 1522 (20531 17 [ =% 1222 (12
in the corresponding annotation file of the MIT-BIH database 508 12055 T 2 13 0'7 7] 20'88 B BT 0' = 1'7 7
record and a false positive (FP) means a false beat detection. - - - -
Using FP and FN, we calculated error rate (ER) based on the 200 ] 3004 ) O 4 013 12086] 0 7 023 170
. . 210 2650 4 18 0.83 120.98 7 15 0.83 | 1.76
following equation:
212 2748 0 10 0.36 |20.75 0 13 047 | 1.72
ER(%) = FP +FN (15) 213 | 3251 | 1 3 o012 [21.02] 3 3 | 0.18 |2.06
Total QRS 214 [2265 | 4 | 3 Jo31 [2086] 2 [ 2 [o18[1.78
. . 215 3363 0 2 0.06 |20.94 0 0 0.00 | 1.87
where Total QRS is total number of QRS complex in the 17 12200 T 5 12 1045 1061 3 o Toa1 1174
ECG data. 219 [2154 | 0 | 0 | 000 [2085] 3 | 1 | 0.19 [1.78
Table 1 shows the summary of QRS detection for both 220 {2048 ] 0 | 0 | 0.00[2075] 0 | O | 0.00 |1.68
algorithms. Here, after applying the algorithm of Wang et al. 221 | 2427 | 6 1 1029 [21.09] 8 | 2 | 041 [177
we got slightly different error rate. Figs. 2-4 show the 222 [2483 ] 0 | 3 | 012 |2058| 5 | 0 [ 020|140
performance of the algorithm. In Fig. 2, the first graph is the 223 | 2605 | 4 1 019 [2087] 5 1 [ 023|184
ECG signal and detected R peaks are marked as circle “o”. 228 | 2053 | 18 | 44 | 3.02 |2061 | 2 | 53 | 2.68 | 1.51
The following graphs in Fig. 2 represent Sy;ff max> Smin and 230 [2256 | o [ 2 | 009 |2088| o | 3 | 013 ]1.59
Smute respectively. It is clear that the variable S,,,;; at R 231 | 1571 0 [ 0 ] 0.00 |2055| 0 | O | 0.00 | 1.45
peaks is giving very high values with respect to Sg;ff max and 232 (1780 ] 0 | 3 ] 0.17 2059 2 | 0 | 011 |1.44
Smin for a same signal section. Figs. 3 and 4 show the 233 13079 | 1 0 | 0.03 {20.13] O 3 ] 0.10 | 2.01
robustness of the new approach against baseline drift and 234 (2753 | 2 0 | 0.07 {2050 ] O 0 | 0.00 |1.81
signals with large T waves respectively by demonstrating the Total |109508( 206 | 409 | 0.56 |20.71 | 192 | 491 | 0.62 | 1.66

€ 9

detected R peaks marked as circle “o”. It is clear that
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Figure 2. QRS detection over tape 205 of MIT-BIH database shohwing
different veriebles for both algorithms.

Furthermore, total time (T) for each recording was
calculated using the MATLAB environment based on the
same computer for both old and proposed methods. Table II
compares the average time taken by these two algorithms. As
shown, the proposed method is 12.48 times faster than the
previous one with almost the same accuracy. Hence, this
algorithm is highly suitable for wearable devices.
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Figure 3. QRS detection over tape 105 of MIT-BIH database with baseline
drifts.

TABLE II. COMPARISON OF TWO ALGORITHMS
Total Total Processing
Method FN FP Error rate Time
Proposed Dual- | 556 | 499 0.62 1.66
Slope
Dual-Slope [7] 192 291 0.56 20.71
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Figure 4. QRS detection over tape 205 of MIT-BIH database with large
T waves.

V. CONCLUSION

In this paper, a new dual slope QRS detection algorithm
was presented and its performance was compared with the
performance of a recently developed dual-slope based
algorithm when applied to MIT-BIH database. The
processing time and computational complexity are important
factors for successful development of wearable sensors. The
proposed algorithm is faster in processing time and lower in
computational complexity compared to the previous
algorithm.
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