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ABSTRACT

This paper proposes a new method for detecting P and T
waves in multilead ECG based on the Finite Rate of Inno-
vation(FRI) technique [8]. A simple QRS detection scheme
will be presented followed by a novel P and T wave detection
algorithm. The novelty here is the modelling of the P and T
wave using a Gaussian kernel. Using a 2D wavelet decompo-
sition, the approximation coefficients are windowed based on
the QRS locations. The FRI method is then used to identify
the Gaussian distribution present in the window which will in
turn provide the locations of the P and T wave. This method
was tested on more than an hour of clean and noisy data and
shows good performance in the noisy case.

1. INTRODUCTION

Electrocardiograms are electrical signals representing the im-
pulses generated by the heart. The ECG signal is represented
by the P, QRS and T waves, as seen in Figure1, and describes
the atrial and ventricular contraction and relaxation, respec-
tively.

Fig. 1. ECG Waveform

The various morphologies of the P and T wave indicate
the presence of cardiac conditions or abnormalities associated
with the atria and ventricles. By identifying the locations of
the P and T waves, this would enable clinicians to better iden-
tify the presence of these waves especially in noisy signals.
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This would be useful especially in channels with low ampli-
tude P and T waves, respectively.

Various methods have been used to detect the P and T
waves: First and Second Derivative [1], slope [9], ICA based
techniques [4] and energy signature [7] methods have been
used. Our method has an added advantage in that all the chan-
nels are compressed into one set of approximation coefficients
from which the P and T waves can be detected. This simpli-
fies the process and is fast in its implementation. The P and T
waves which are less prominent in some channels can also be
detected much more easily this way.

This paper is arranged as follows. Section 2 describes the
methodology used to detect the P and T waves. Section 3
describes the data collection experiments and the results ob-
tained. Section 4 concludes the paper.

2. METHODOLOGY

We present in detail the proposed P and T wave detection al-
gorithm described in Figure 2. Consider a multichannel ECG
signal, x[m,n] where m is the channel number and n repre-
sents the index of the data points. The signal x[m,n] will first
undergo QRS detection so as to define the windows, τP and
τT , which contain the P and T waves.

In [8], a sampling and reconstruction scheme was pre-
sented for a class of parametric signals containing a finite
number of degrees of freedom, termed as signals with a Fi-
nite Rate of Innovation(FRI). It proved that a stream of K
weighted Diracs, x(t) =

∑K
k=1 ckδ(t − tk) where t ∈ [0, τ ],

could be perfectly reconstructed from uniform samples taken
at the rate of innovation, ρ = 2K

τ . In this paper τ is defined
as the windows, τP and τT , which will be further discussed
in Section 2.3.1.

The P and T waves within the windows τP and τT are
modelled as Gaussian filtered Diracs and FRI is then used to
retrieve the location and amplitude parameters.

2.1. QRS detection

The proposed QRS detector is based on the energy method de-
veloped by J.F.Kaiser [2] and Pan and Tompkins [5]. In this
section, the QRS detection is applied to each channel individ-
ually, hence the signal x[n] is used without reference to the
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Fig. 2. Multichannel P and T wave detection algorithm using the FRI method

channel number m. The method in [2] was modified to take
the width of the QRS in account which can be represented by

E[n] = x[n]2 − x[n− (
w

2
fs)]x[n+ (

w

2
fs)], (1)

where w is the maximum width in seconds of the QRS com-
plex and fs is the sampling frequency. Equation (1) behaves
like the lowpass filter in [5]. In this paper, a value of w =
0.10sec [3] was used to account for a large variety of QRS
complexes. The energy signal, E[n], is then thresholded to
identify the QRS locations, tQRS . Assuming a maximum
heart rate of 200 beats/min, if peaks were less than 60/200
secs apart, the highest valued peak will be chosen and the rest
will be rejected.

If two or more channels identify a similar QRS location
within an error threshold, the location is confirmed. The av-
erage of all the similar locations is then taken as the QRS
location. If only one channel identifies a location, then the
location is rejected.

2.2. 2D wavelet transform

The ECG signal, x[m,n], is then decomposed using a 2D
wavelet decomposition. The Biorthogonal 5.5 wavelet was
found appropriate for ECG signals [6].The wavelet is then
used to decompose x[m,n] which yields the approximation,
horizontal, vertical and diagonal coefficients which are de-
noted by the variables A,H, V and D, respectively.

The bandwidth of x[m,n] which is of interest is < 30Hz.
Therefore an appropriate level of decomposition should be
used given that the bandwidth of the signal reduces by half
after each decomposition. The approximation coefficients, A,
are then reshaped into a single row vector.

2.3. Windowing and FRI Parameter Retrieval

The QRS locations are found by applying the method in Sec-
tion 2.1 on the multichannel ECG signal, x[m,n]. These QRS

locations are then mapped onto the approximation coefficients
t̂QRS , using a scaling factor h, followed by a shift g,

t̂QRS = (h× tQRS) + g. (2)

The hat notation is used to represent the values mapped
onto the approximation coefficients, A.

2.3.1. Windowing

The approximation coefficients, A, are windowed before and
after the QRS locations, t̂QRS . The windows are defined by
medically accepted intervals for physiological processes [3]
such as the contraction and relaxation of the atria and ventri-
cles. The constants w = 0.1sec, v = 0.08sec, u = 0.2sec,
z = 0.4sec, s = 0.1sec are used to denote the QRS, ST, PR,
QT and P wave duration respectively [3]. The windows are
defined by

τP = [t̂QRS − 0.5ŵ − û, t̂QRS − 0.5ŵ − û+ ŝ] (3)

τT = [t̂QRS + 0.5ŵ + v̂, t̂QRS − 0.5ŵ + ẑ], (4)

where τP and τT represent the windows for the P and T waves
respectively. The constantsw, v, u, z, s are defined for a heart
rate of 60 beats/min and therefore would have to be weighted
depending on the instantaneous heart rate(HR) which can be
calculated from the RR intervals found in Section 2.1. The
values w, v, u, z and s are multiplied by a factor 60

HR to weigh
them accordingly. These values are then mapped to the ap-
proximation coefficients using the same scaling factor and
shift in Equation (2). The windows do not need to capture
the entire P or T wave and only needs to contain the peak of
the wave.

2.3.2. FRI parameter retrieval

From now on, the FRI method would represent the sampling
and reconstruction of signals using the Annihilating filter
method found in [8]. We define the locations, tk, and ampli-
tudes, ck, as the parameters to be retrieved from each window,
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τP and τT . Since each window only contains one Gaussian
filtered Dirac, K = 1, correspondingly there will only be one
tk and ck per window and it would need to be sampled at a
minimum rate of ρ = 2

τ . In other words, a minimum of 2
uniform samples per window is needed. The samples, yn are
given by

yn =

K−1∑
k=0

cke
−(tk−nT )2/2σ2

=

K−1∑
k=0

(cke
−t2k/2σ

2

)entkT/σ
2

e−n
2T 2/2σ2

, (5)

where σ represents the standard deviation of the Gaussian ker-
nel and n = 0, ..., N − 1. The σ value is known a priori.

If we let S[n] = e−n
2T 2/2σ2

yn, ak = cke
−t2k/2σ

2

, uk =

entkT/σ
2

, then Equation (5) is equivalent to

S[n] =

K∑
k=0

aku
n
k , n = 0, . . . , N − 1. (6)

The annihilating filter method in [8] can be used to solve
Equation (6) and resolve for the uk values. The tk values are
then given by

tk =
σ2 lnuk
T

, (7)

where tk,P and tk,T represent the locations in the τP , and τT ,
windows respectively. The amplitudes are then given by

ck = ake
t2k/2σ

2

. (8)

The locations of the P and T waves in the approximation
coefficients,A, can be represented by

t̂P = t̂QRS − 0.5ŵ − û+ tk,P (9)

and

t̂T = t̂QRS + 0.5ŵ + v̂ + tk,T , (10)

where tk,P and tk,T represent the location of the peak in the
τP and τT windows respectively.

The locations in the time domain can be found by revers-
ing the shift and scaling performed in Equation (2).

3. EXPERTIMENT AND RESULTS

3.1. Data Collection

The data used in this paper was obtained using the CleveMed
BioCaptureTMwhich can record up to eight channels simulta-
neously. A sampling rate of 960Hz with a resolution of 12
bits/sample was used to capture the data. A three lead ECG,
leads I, II and III, were captured using wet electrodes.

The subjects were made to perform various tasks which
included raising of arms, picking up objects from the ground,
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Fig. 3. P and T wave detection on 3 lead ECG signals

brushing teeth, jogging, push ups and climbing stairs. A total
of twenty sets of data were collected from three volunteers.
These tests were designed to observe the artefacts generated
on an ambulatory ECG device during the daily routine of reg-
ular people. Artefact free segments as well as segments with
EMG and motion artefact were chosen to test the robustness
of this algorithm.

3.2. Results

The algorithm presented in Section 2 was tested on the data
in Section 3.1. Each segment of data tested was 4096 samples
long. The threshold used in Section 2.1 was 0.75σE , where
σE is the standard deviation of the energy signal, En. Also,
a 5th level decomposition is used in Section 2.2 due to the
960Hz sampling rate.

The P and T wave detection was tested on clean ECG sig-
nals as well as on signals with artefacts added to them. Both
baseline wander and Electromyography(EMG) artefacts were
simulated and added to a clean segment of data. Baseline
wander was simulated as a 4th order polynomial and EMG
was simulated as additive Gaussian white noise at various
SNR levels.

As seen in Figure 3, the method outlined in this paper
can identify the P and T waves in normal ECG signals. All
the P and T waves were identified accurately. This shows the
validity of the assumption that all the P and T waves and QRS
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Fig. 4. Top: Reshaped A5 coefficients, (a)-(c):P and T wave detection on ECG signal with simulated baseline wander and EMG
noise at SNR 0dB, (d)-(e): Detected P and T wave instances juxtaposed onto the original, clean ECG signal

complexes occur at the same instances. This in turn validates
the use of the 2D wavelet transform where theA5 coefficients
shows relevant information from all the channels.

In Figure 4, the case containing simulated artefacts is
shown. The P and T wave detection was tested on the noisy
signal and the detected P and T wave instances were jux-
taposed onto the original, noiseless signal to confirm the
accuracy of the detection. As can be seen, the P and T waves
were detected accurately despite the noise. Also shown in
Figure 4 are the approximation coefficients involved in the
detection process.

The results were consistently reliable at EMG noise lev-
els of up to 0dB and anything lower degrades the performance
significantly. The determining factor for performance would
be the QRS detector as the positions of the windows are de-
pendant on that.

The multichannel nature of the method presented in this
paper is advantageous in scenarios where the amplitude of the
P or T wave is very low in one or more channels. As can be
seen in Figure 4, where the T wave amplitude in Channel III
is low, it is compensated for by the other two channels which
enables accurate detection. This is on the basis that if a T
wave is present in one channel, it should be present in all
other channels.

4. CONCLUSION

The results described in Section 3.2 show the robustness of
the method presented in this paper. The ability to handle
intense artefacts makes this suitable for use when analyzing
ECG signals from ambulatory devices such as Holter moni-
tors. The algorithm can also be applied to the single channel
case where a 1D wavelet transform is used and the results are
similar.

The method presented in this paper could also be extended
to detecting P waves in 2 : 1 AV blocks where P waves appear
without the corresponding QRS complex. The windows could
be applied between QRS complexes which exhibit bradycar-
dia, or low heart rate, which is an indication of 2 : 1 AV
block. The windows could be placed so that the P waves can
be located for the missing QRS complexes.

One weakness of this method is that it is not real-time and
has to be applied as a post processing step. Possible imple-
mentation with the real time QRS detection in [5] would be
a possibility and will have to be investigated further.
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