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Abstract— Recent studies pointed out possible shape 

modifications of the Probability Density Function (PDF) of 

surface electromyographical (sEMG) data according to several 

contexts like fatigue and muscle force increase. Following this 

idea, criteria have been proposed to monitor these shape 

modifications mainly using High Order Statistics (HOS) 

parameters like skewness and kurtosis. In experimental 

conditions, these parameters are confronted with small sample 

size in the estimation process.  This small sample size induces 

errors in the estimated HOS parameters restraining real-time 

and precise sEMG PDF shape monitoring.  Recently, a 

functional formalism, the Core Shape Model (CSM), has been 

used to analyse shape modifications of PDF curves.  In this 

work, taking inspiration from CSM method, robust functional 

statistics are proposed to emulate both skewness and kurtosis 

behaviors. These functional statistics combine both kernel 

density estimation and PDF shape distances to evaluate shape 

modifications even in presence of small sample size. Then, the 

proposed statistics are tested, using Monte Carlo simulations, 

on both normal and Log-normal PDFs that mimic observed 

sEMG PDF shape behavior during muscle contraction. 

According to the obtained results, the functional statistics seem 

to be more robust than HOS parameters to small sample size 

effect and more accurate in sEMG PDF shape screening 

applications. 

 

 

I. INTRODUCTION 

Classically, muscle activation and fatigue are often 
evaluated using time parameters as Averaged Rectified 
Value (ARV) and Root Mean Square (RMS) value and 
frequential parameters as Mean Frequency (MNF) and 
Median Frequency (MDF) that are mainly linked to energetic 
dynamics of the sEMG signals.  Recently, another signal 
representation, namely, the amplitude PDF, has been 
explored and obtained promising results concerning the 
evaluation of both fatigue [1, 2] and muscle activation [3, 4] 
with force increase.  These amplitude statistics are derived 
from HOS parameters (skewness and kurtosis) and also from 
a recent functional formalism, from the Functional Data 
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Analysis (FDA) community. It allows a shape screening of 
the sEMG PDF [5], [6]. Unfortunately, in experimental 
conditions, these statistical parameters need large sample 
size for accurate PDF estimation that strongly restrains real-
time or fine time resolution PDF shape screening [3]. In this 
work and by taking inspiration from the CSM formalism, 
robust functional statistics are proposed. They measure 
localized shape distances between an observed PDF curve, 
estimated by kernel density estimation [7] from sEMG data 
and a reference one, the Normal PDF shape, to evaluate a 
possible departure from Gaussianity. After describing their 
formalism, Monte-Carlo simulations, using small sample size 
(500 samples) are launched to compare these statistics to 
HOS ones, according to several PDF shapes simulated using 
centered Log-Normal random processes. These PDF shapes 
mimic the ones obtained using Laplacian electrode 
arrangement and recently observed in both simulation [3] 
and experimentation [8]. Finally, the obtained results are 
discussed and some perspectives exposed. 

 

II. METHODS 

A. Robust functional statistics 

The CSM method is a recent formalism that allows, using 

function estimation procedure, the evaluation of subtle shape 

modifications in a set of curves [5]. It has been used with 

success to evaluate deterministic signals [5,6] or random 

ones [3]. By taking inspiration from this formalism (with 

polynomial order equals 1), we propose metrics that measure 

the distance of a PDF from Gaussianity including asymmetry 

and flatness measures as for the HOS parameters. Assume 

that there are two PDFs ( )p x and  ( )g x  that represent a 

random sEMG signal PDF and a normal PDF respectively 

defined on  ,l l .  The Normal PDF ( )g x  is obtained using 

its analytic definition. The sEMG PDF ( )p x is obtained 

using a kernel estimation procedure [7] to obtain a smooth 

continuous (better abscissa resolution) curve less noisy than 

the classical histogram. Their normalized integrals 

(distribution function in F ) can be defined  as  [5]:
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Where [ , ] [ , ], [ , ] [ , ]p p g ga b l l a b l l     are the nonzero 

supports of ( )p x and ( )g x  respectively. The obtained 

distribution functions ( )P x  and ( )G x can typically be linked 

through a warping function expressed as   or  . 

Specifically, we can write:  

 

                       , ,P G PG                   (2) 

 

where 
iP = G 
 
is a shorthand notation for the composition 

function  ( )P x = G( (x)). The time warping  function 
1   links ( )P x to ( )G x  and represents the fluctuations 

in both shape and abscissa support [5]. The PDF shape 

analysis, aims at separating intrinsic shape variation from 

those caused by first and second moment variability. To 

reach this objective, we propose a representation of   as 

[6]: 

 

    1 1, ,v A A w w v                         (3) 

 

where ( ) , ,A x x        is an affine function 

(polynomial function of order 1) that accounts for mean and 

variance variability of ( )p x . The second element w
 
is a 

monotonically increasing nonlinear function that represents 

shape fluctuations on a constant support. Therefore, we can 

rewrite (3) as follows in F and 
1F   respectively [6]: 

 

       
1 1 1 1 1,

-1P = G v A , G = P A w

P A w G A P w G         (4)    

Where ( ) ( ), [0,1]w y y n y y    and ( )n y is a function 

that accounts for small intrinsic shape modification and 
modeling the departure from linearity of  w .  By replacing 

this last equation in (4), we obtain: 

1 1 1( ) ( ) ( ( )), [0,1]P y G y n G y y             (5)      

where the term 1( ( ))n G y  represents the shape difference 

between the realigned function 
1ˆ( ( ))A P y

and 1( )G y .The 

parameters  and   are estimated by constrained linear 

regression between 1( )P y and 1( )G y like in [6]. A 

simulation for illustration is depicted on Figure.1. One can 
observe the realignment procedure and the remaining shape 

difference between 1ˆ( ( ))A P y  and 1( )G y since 1( )P y is 

estimated from a Log-Normal random sequence. 

Then, we propose three distances, namely, the Center Shape 
Distance (CSD), the Left Shape Distance (LSD) and the 
Right Shape Distance (RSD) that measure  shape differences 

between realigned 
1ˆ( ( ))A P y

and 1( )G y  in the center, the   

 
 Figure  1. The functions 1( )G y  (-), 1( )P y (Log-Normal 1 shape, - -), 

and realigned 1ˆ( ( ))A P y (red line). 

 

 

left and the right regions respectively. These distances are 

defined as follows: 
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From these definitions, on can observe that the CSD distance 

is a metric that is sensitive to the flatness or peakedness (as 

the kurtosis) of ( )p x and observed in the middle region of its 

inverse distribution function 1( )P y . The LSD and RSD 

distances scrutinize the departure from gaussianity in the left 

tail and right tail region of ( )p x  (see Figure 1). These two 

distances, if they are not equal, can inform us about possible 

asymmetry of ( )p x . One can note that the three proposed 

distances are positive if ( )p x is not a Gaussian PDF and 

equal to zero if ( )p x is a Gaussian PDF. 

 

B. HOS parameters 

Classically, PDF shape modifications are monitored with 

HOS parameters (skewness and kurtosis). We recall briefly 

the definitions of both normalized HOS parameters in the 

following equation for a random variable U (sEMG sample 

values): 

 

          
3 4

U U

U U3 4

U U

E U - E U -
Sk = , Kr = - 3

 

 
               (7) 

 

where E(.) is the expectation operator and ,U U  are 

respectively the expected value and standard deviation of U . 
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These two HOS parameters are both invariant to variance 

and mean value variability, like the proposed functional 

distances. Both are also centered on the zero value and are 

signed parameters in the opposite of the proposed functional 

metrics. 

 

III. SIMULATION & RESULTS 

The proposed functional statistics are tested using 
Monte-Carlo simulations and their robustness evaluated 
against small sample size effect and compared to HOS 
parameters. For this purpose, four PDF shapes are simulated 
from random sequences of 500 samples. The first studied 
shape is the Normal (Gaussian) shape to evaluate the ability 
of both functional statistics and HOS to express the 
Gaussianity in drastic conditions. The three other PDF 
shapes are derived from centered Log-Normal distributed 
sequences using a specific random number generator. In fact, 
these PDF shapes have been already observed by both 
simulation [3] and experimentation [8] in sEMG signals 
recorded using Laplacian electrode arrangements.  The four 
shapes and their respective analytical representations are 
exposed in Figure 2. Using this methodology, we generated, 
for each PDF shape, 1000 sequences of 500 samples with 
each sequence distributed according to the corresponding 
PDF law. Also, The HOS parameters are computed from 
these random sequences according to each PDF shapes. 
Then, smooth and continuous PDFs are estimated using 
kernel density estimation (ksdensity function in Matlab). 
Each estimated PDF is based on a normal kernel function, 
and is evaluated at 100 equally spaced points.  For each 
sequence, the estimated PDF is then used for computing the 
CSD, LSD, and RSD distances following the formalism 
described earlier. After, mean and standard deviation, of 
each parameter and each studied PDF shape, are calculated 
and exposed in the Table.1 and Table. 2 for (skewness, LSD, 
RSD) and (kurtosis and CSD) respectively.  A graphical 
illustration of the parameter trend and variability according 
to PDF shape is also provided using boxplot representation 
in Figure.3 and Figure. 4. 

Concerning the parameters sensitive to PDF asymmetry, we 
can observe that functional statistics, especially the LSD 
parameter, outperform the skewness parameter in both mean 
value separation and standard deviation smallness according 
to PDF shape class as presented in Table.1. In fact, this 
means that, despite the small sample size (500 samples) used 
to describe the PDFs, the LSD parameter was able to better 
discriminate the four classes than the skewness parameter 
(see Figure 3). As for RSD and the skewness parameter, one 
can observe an increase with the class number indicating a 
departure from Gaussianity. In addition, the Normal PDF 
shape, LSD and RSD are, in average, equal but not null. This 
should be explained by the unsigned nature of these 
parameters, that induces a little bias, and by the symmetry of 
the Normal PDF. This bias is not present for the signed 
skewness which is well centered on zero. We can also 
observe, from the data in Table.1, an increase in the (μLSD- 
μRSD) mean difference, from the Normal shape toward the 

Log-Normal3 shape, indicating probably an asymmetry  

 

Figure  2. Analytical representations of the four studied PDF shapes. 

 

Figure  3. Robustness evaluation of the three parameters (skewness,  

LSD, and RSD) according to small sample size effect and PDF shape. 

 

Figure  4. Robustness evaluation of the two parameters (kurtosis and 

CSD) according to small sample size effect and PDF shape. 
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increase validated with the increase of the mean skewness 
parameter. 

For the parameters sensitive to PDF peakedness, the 
performances differences are more pronounced since the 
kurtosis is not able to discriminate the four class shapes due 
to an important standard deviation increase indicating a 
strong variability. In contrast, the CSD parameter remains 
stable with increasing the PDF shape deformation as 
depicted in both Table.2 and Figure.4. We can also observe a 
little bias as for the RSD and LSD parameters in evaluating 
the Normal shape for the same explained reason. 

In addition, the kurtosis seems to be, by far, less robust to the 
sample size effect than the skewness according to the 
obtained results. 

IV. DISCUSSIONS AND CONCLUSION 

In this work, we proposed robust functional statistics to 
small sample size effect for evaluating four sEMG PDF 
shapes. For this purpose, these PDF shapes have been 
simulated from Normal law and Log-Normal law observed 
on experimental and simulated data recorded using Laplacian 
electrode arrangement.  These metrics have been designed by 
taking inspiration from a recent functional formalism used in 
shape analysis, namely, the CSM formalism. The proposed 
algorithm is composed of two steps. A first step concerns the 
estimation of smooth and continuous (better abscissa 
resolution) PDF from a finite random sequence using kernel 
density estimation. The second step is the calculus of 
localized shape distances between a realigned curve (related 

to the PDF to evaluate) and a reference Normal curve both 
computed in the inverse distribution function domain. In 
other words, these shape distances allow the Gaussianity 
evaluation of a random sequence in both asymmetry and 
peakedness behaviors as for the HOS parameters. 

After, the ability of these metrics to separate  PDF shapes 
in drastic conditions (500 samples by random sequence) was 
assessed  and compared to classical HOS parameters using 
Monte-Carlo simulations (1000 trials).  According to the 
obtained results, these functional amplitude statistics seem to 
be more robust and discriminative according to four realistic 
sEMG PDF shape classes for both asymmetry and 
peakedness behaviors.  In experimental conditions, this 
robustness should allow a finer time screening of sEMG PDF 
shape modifications since if the sEMG sampling frequency is 
classically around 2 kHz, one can obtain a maximum of 4 
observation points per second using a windowing of 500 
samples. This interesting property has to be verified, using 
rigorous statistical testing, in real conditions in future 
studies. 
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TABLE II.  ROBUSTNESS EVALUATION (MEAN AND STD OVER 1000 

TRIALS) 

PDF  

shapes 

CSD 

μ+σ (σ %) 
Kurtosis 

μ+σ (σ %) 

Normal 
 

0.1±0.06(*) -0.01±0.21(*) 

Log-

Normal 1 
0.44±0.11(25) 0.66±0.72(110) 

Log-

Normal 2 
0.65±0.11(17) 1.52±1.23(81) 

Log-

Normal 3 
0.84±0.10(12) 2.93±2.10(72) 

(*) Not relevant 

 

 
 

 

TABLE I.  ROBUSTNESS EVALUATION (MEAN AND STD OVER 1000 

TRIALS) 

PDF  

shapes 

RSD 

μ+σ (σ %) 
LSD 

μ+σ (σ %) 
Skewness 

μ+σ (σ %)  

Normal 

 
 

0.19±0.09(*) 0.19±0.09(*) 0.01±0.11 (*) 

Log-

Normal 

1 

0.67±0.2(29) 0.77±0.16(21) 0.61±0.16(26) 

Log-

Normal 

2 

0.97±0.21(21) 1.17±0.18(15) 0.93±0.20(22) 

Log-

Normal 

3 

1.25±0.25(20) 1.59±0.21(13) 1.28±0.28(22) 

(*) Not relevant 
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