
  

 

Abstract— Transrectal ultrasound guided prostate biopsies 

often fail to diagnose prostate cancer with 90% of cores 

reported as benign.  Thus, it is desirable to target prostate 

cancer lesions while reducing the sampling of benign tissue.  

The concentrations of natural fluorophores in prostate tissue 

fluctuate with disease states.  Hence, fluorescence spectroscopy 

could be used to quantify these fluctuations to identify prostate 

cancer.  An optical biopsy needle with a light sensitive optical 

probe at the tip of the inner needle was developed to take 

prostate biopsies after measuring tissue fluorescence with a 

laboratory fluorometer.  The optical probe consists of eight 100 

µm fibers for tissue excitation and a single 200 µm fiber to 

capture fluorescence spectra.  Random biopsy cores were taken 

from 20 surgically excised prostates after measuring 

fluorescence spectra of tissue between 295-550nm for several 

excitations between 280-350nm. Each biopsy core was 

histopathologically classified and correlated with corresponding 

spectra. Prostate biopsies were grouped into benign or 

malignant based on the histological findings.  Out of 187 biopsy 

cores, 109 were benign and 78 were malignant.  Partial least 

square analysis of tissue spectra was performed to identify 

diagnostically significant principal components as potential 

classifiers.  A linear support vector machine and leave-one-out 

cross validation method was employed for tissue classification.  

Study results show 86% sensitivity, 87% specificity, 90% 

negative predictive value, and 83% positive predictive value for 

benign versus malignant prostate tissue classification.  This 

study demonstrates potential clinical applications of 

fluorescence spectroscopy guided optical biopsy needle for 

prostate cancer diagnosis with the consequent improvement of 

patient care.   

I. INTRODUCTION 

Prostate cancer is the most common noncutaneous human 
malignancy, and the second most lethal tumor among 
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American men [1].  In 2014, an estimated 233,000 men will 
be diagnosed with prostate cancer and 29,480 will die from 
this disease [1].  Prostate cancer is currently diagnosed by 
pathological examination of biopsy tissue obtained from 
patients suspected of having the disease.  Prostate biopsies 
are recommended for men with a serum prostate-specific 
antigen (PSA) level above 4 ng/mL or with an abnormal 
digital rectal exam (DRE) [2].  Prostate biopsies are obtained 
using an 18G biopsy needle under the guidance of transrectal 
ultrasound (TRUS). 

The standard of care requires urologists to take 10-12 
TRUS biopsies per patient.  The clinical prostate cancer 
detection rate is only 25-35%.  More than 50% of cancers 
that need definitive therapy remain undetected during initial 
biopsies [3].  Such undiagnosed cancers are at high risk of 
spreading beyond the prostate gland and metastasizing to 
distant sites.  Currently, there are no curative treatments 
available for metastatic prostate cancer [4].  Therefore, 
patient survival depends largely on early and accurate 
diagnosis of this disease.   

TRUS images show only the anatomical landmarks of the 
prostate gland, but not the individual cancer lesions.  Hence, 
TRUS biopsies are subject to serious sampling errors and 
often miss significant cancers [3].  Therefore, the main 
limitation of TRUS biopsies is that they are taken randomly 
without any prior knowledge of whether the underlying 
tissue is cancerous or not.  

Optical spectroscopy methods can be used to determine 
whether underlying tissue is cancerous or not [5].  The light-
tissue interaction is characterized by the physical nature of 
light and specific tissue morphology and composition [6].  In 
fluorescence spectroscopy, one or more narrowband light 
sources are used to excite endogenous fluorophores and the 
emission spectrum at each excitation wavelength is detected.  
The fluorescence spectra (FS) depend on several important 
endogenous fluorophores such as tryptophan, collagen, 
nicotinamide adenine dinucletide (NADH), flavin adenine 
dinucleotide (FAD), and others.  Quantitative analysis of FS 
obtained from tissue can provide valuable information 
regarding biochemical changes that correlate with disease 
status [7].  

Zhu et al used a fiber optic probe to measure FS at seven 
excitation wavelengths from 300 to 420 nm in 20 nm 
increments of breast tissues in vivo during percutaneous 
image-guided breast biopsy [8].  They analyzed a total of 
121 biopsy samples with histopathology data and 
accompanying FS.  Partial least square and support vector 
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Figure 1: Optical biopsy needle with BARD Urological MAGNUM 
biopsy gun 

machines with leave-one-out cross validation provided 
sensitivity and specificity of up to 81% and 87%, 
respectively, for malignant versus fibrous/benign tissue 
classification [8].  Jayanthi et al used a fiber optic probe for 
classification of oral lesions in vivo employing FS for 404 
nm excitation  [9].  Linear discriminant analysis based on the 
leave-one-out method of cross validation was able to 
differentiate pre-malignant dysplasia from squamous cell 
carcinoma, benign hyperplasia from dysplasia and 
hyperplasia from normal with overall sensitivities of 86%, 
78%, and 92%, and specificities of 90%, 100%, and 100%, 
respectively. 

We have prototyped a 15G optical biopsy needle (an 
integrated optical sensor and a biopsy needle) based on FS to 
obtain prostate biopsies after the optical characterization of 
underlying tissue [10]. This needle was tested using 
surgically excised radical prostatectomy specimens.  In 
Section II we present design and testing methods for the 
optical biopsy needle and spectral data analysis for prostate 
tissue classification.  In Section III, experimental results are 
provided including sensitivity and specificity for prostate 
cancer diagnosis.  Conclusions are presented in Section IV. 

II. METHODOLOGY 

A. Experimental Setup 

Our optical biopsy needle shown in Figure 1 consists of a 
15G outer needle, slightly smaller inner needle, and two 
optical connectors.  The inner needle has an optical sensor at 
the tip and a sample notch to hold the biopsy tissue.  Two 
sets of fiber optics cables are used for excitation and capture 
of emission spectra of tissue.  The frontend of fibers are 
terminated at the tip of the inner needle and arranged as the 
optical sensor for optical characterization of tissue.  The 
backend of fibers are terminated with standard SMA 
connectors.  Both inner and outer needle were tested for 
structural integrity and reliability.  This needle interface with 
the BARD Urological MAGNUM® gun and can cut 22 mm 
long tissue cores following optical characterization of tissue. 

The inner needle of a standard prostate biopsy needle has 
been redesigned to lay fiber optic cables underneath the 
specimen notch.  The optical sensor consists of eight 100 µm 
source fibers with numerical aperture (NA) of 0.22 arranged 
in a circle with a single 200 µm center fiber with NA of 0.22 
to read the fluorescence signal.  The tip of the needle is cut 
and polished at a 60 degree angle to facilitate tissue cutting 
and minimize reflective losses for light travelling from the 
fiber optic probe into the tissue.  This critical angle was 
determined according to the Snell’s law of refraction using 
refractive indices of 1.491, 1.478, and 1.385 for fiber at 290 
nm, 340 nm, and mammalian HeLa cells, respectively.  

Patients scheduled for radical prostatectomy surgery at 
the University of Colorado Hospital between April 2009 and 
June 2010 were consented for this study.  Surgically excised 
prostatectomy specimens from consented patients were 
delivered to the lab within minutes.  Optical data and 
corresponding tissue biopsy cores were taken within 90 min 
after surgical excision of the specimen. 

Using a standard laboratory fluorometer (Fluorolog-3, JY 
HORIBA) with an optical platform, we collected FS from 
different anatomical locations of the prostate with 
corresponding tissue biopsy cores.  The Fluorolog-3 contains 
a 450W xenon arc lamp as the excitation source, a 
monochromator as the excitation wavelength selector, a 2
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monochromator to select the emitted fluorescence from the 
sample, and an R928P photon multiplier tube in photon-
counting mode as the emission detector.  Background 
measurements were taken by inserting the biopsy needle in a 
test tube with deionized water.  FS spectra were obtained at 
280, 290, 300, 330, 340, and 350 nm excitations.  Emission 
spectra were collected starting 15 nm higher from each 
excitation wavelength at 5 nm intervals up to 550 nm.  We 
obtained spectral data and corresponding tissue biopsy cores 
from 10-12 different locations within each prostate 
specimen.  The distal-end of each biopsy core was inked and 
put inside a specimen vial containing 10% neutral buffered 
formalin (NBF). Each specimen vial was labeled accordingly 
to correlate with spectral data. After data collection, the 
prostate specimen was placed in a specimen container with 
10% NBF.  

For histopathological classification, standard 
hematoxylin and eosin (H&E) stain slides were prepared 
from formalin-fixed biopsy cores.  Based on the geometry of 
the needle and BARD Magnum gun, we calculated the exact 
location of the tissue where optical characterization took 
place.  This “spectral acquisition field” or “measurement 
window” is located 1.7mm from the inked-end of the core as 
shown in Figure 2.  Since the area of illumination depends 
on probe geometry and is approximately equal to 400 µm, 
we have chosen a measurement window of width 0.5 mm to 
allow for tolerances. The FS is correlated with 
histopathology of tissue within this window. Tissue is 
classified either as benign or malignant.  
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Figure 2: Location of the spectral acquisition field on a tissue 
biopsy core  

 

Figure 3: Steps involved in the fluorescence spectra and 
histopathological data analysis.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Fluorescence spectra of benign and malignant tissue after 
background subtraction (A, B) and normalized fluorescence 
spectra (C).  

 

B. Data Analysis 

Prostate biopsies were grouped into two categories; 
benign and malignant.  The benign  category  includes  all  
biopsies  that  did  not  show  any  evidence  of malignancy  
within  the  measurement window.  FS data were processed 
according to the steps shown in Figure 3.  Background was 
subtracted from each FS and signal-to-noise (S/N) ratio was 
determined.  There is a degradation of the fluorescence 
signal when the biopsy needle is inserted into regions of the 
prostate with calcification, holes filled with prostatic fluids, 
or intersecting a previous biopsy location.  These signals are 
unsuitable for tissue classification.  Therefore, fluorescence 
signals with S/N ≤6 were excluded from the analyses.  FS for 
280, 290, and 300 nm excitations were trimmed at 450 nm 
and 330, 340, and 350 nm excitations at 540 nm.  FS at each 
excitation was normalized to itself so that the area under the 
curve is unity. This eliminates inter- and intra-patient 
variations.  

Partial least square analyses of tissue spectra was carried 
out to reduce data dimension and identify principal 
components (PC) that can be potential candidates to classify 
benign versus malignant tissue [11].  For all tissue samples, a 
set of PCs was identified using a Wilcoxon rank-sum test as 
showing statistically significant differences (P < 0.05) 
between benign and malignant categories. Pearson 
correlation coefficient was used to determine whether any of 
the statistically significant PCs were correlated or not.  If two 
PCs were correlated (R ≥ 0.4) then only one of the two PCs 

was included in the analyses.  To remove data redundancy, 
only the PC scores that were diagnostically significant as 
well as least correlated with other diagnostic PCs were input 
into the tissue classification algorithms.  Selected PCs were 
tested for their ability to differentiate between benign from 
malignant tissue using linear support vector machine (SVM) 
and non-linear SVM using a radial basis function (RBF) as 
kernel function [12].  The leave-one-out cross validation 
method and SVM learning were employed to determine 
sensitivity, specificity, negative predictive value, and 
positive predictive values of the tissue classification 
algorithm.  

III.  EXPERIMENTS AND RESULTS 

A total 187 biopsy cores were included in the analyses.  

Histopathological diagnosis of tissue within the measurement 

window classified 109 as benign and 78 as malignant. Figure 

4A and B show background subtracted FS for benign and 

malignant prostate tissue.  Notable peaks include tryptophan 

at 340nm, collagen at 400nm, and NADH at 460nm. 

Normalized FS are shown in Figure 4C. 
Table I summarizes performance of the tissue 

classification algorithm employing linear SVM for various 
combinations of PCs chosen from different excitations.  The 

A 

B 

C 
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performance of the tissue classification algorithm when 
employing non-linear SVM with RBF as kernel function was 
similar to the linear SVM.  The best results of 86% 
sensitivity and 87% specificity for malignant versus benign 
tissue classification were obtained when using PCs of 290, 
330, 340, and 350 nm.  Negative predictive value was 90%, 
i.e., 90% of benign tissue cores were correctly diagnosed.  
Positive predictive value was 83%.  For only two excitation 
wavelengths, PCs of 280 and 330 nm returned very similar 
classification results. Out of three excitations tracking 
tryptophan, 280 and 290 nm excitations provided better 
classification results than 300 nm.  Out of three excitations 
tracking collagen and NADH, 330 and 340 nm excitations 
were more effective than 350 nm.   

IV. CONCLUSION 

Our experimental data support potential clinical 

application of an optical biopsy needle based on FS for 

systematic prostate biopsies with increased sensitivity and 

specificity.  Oxy- and deoxy hemoglobin interferes with the 

optical signals in the near UV range.  Since there is no blood 

flow in ex vivo settings, it is difficult to estimate the impact 

of this important factor on tissue classification.  For clinical 

applications, the configuration of the optical probe must be 

optimized by reducing the number of read fibers with 

consequent improvements in overall performance.  

Additional studies in human patients are required to further 

validate our findings.  
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TABLE I. PERFORMANCE OF THE TISSUE CLASSIFICATION ALGORITHM 

 

Selected Principal Components  

(excitation wavelengths in bold) 

Sensitivity Specificity Negative predictive 

value*  

Positive predictive 

value*  

280: #1-3, 5 83% 79% 87% 74% 

280: #1-3,5; 340: #2 79% 85% 85% 79% 

280: #1-3; 330: #2,4,5 86% 83% 89% 79% 

280: #1-3; 330: #1,2,4; 340: #1,2; 350: #1,2 85% 85% 89% 80% 

290: #1-5 80% 74% 84% 69% 

290: #1-4; 340: #3,4 82% 84% 87% 78% 

290: #1-3; 330: #1,2,4; 340: #1,2; 350: #1,2 86% 87% 90% 83% 

300: #1,2 62% 72% 72% 61% 

300: #1,2; 330: #2,4,5 70% 82% 79% 73% 

300: #1,2; 330: #1,2,4; 340: #1,2; 350: #1,2 74% 82% 82% 74% 

*Negative predictive values and positive predictive values were calculated without using actual disease prevalence estimates [8]  
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