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Abstract— We present a scaling model for electrically-
actuated needle free jet injectors, establishing the relationship
between injection volume and motor size. Using an analytical
electromagnetic model for the motor, we derive an optimal
motor design, and show that this design is approximately
scale-invariant. To illustrate the utility of this model, we then
describe the design of a motor for use with 300µL disposable
injection ampoules with a mass of just 300 g, including a
light-weight support structure. Experimental verification of the
motor performance shows close agreement to model predictions,
with a peak force of 1000 N/kg and a 150 m/s water jet delivered.

I. INTRODUCTION

Needle-free jet injection is a promising technique for drug
delivery using a >100 m/s stream of liquid drug, capable of
penetrating skin and underlying tissue to depths ranging from
epidermal to intramuscular [1]. Formation of this jet requires
pressures of over 20 MPa, yet the jet is only required for
tens of milliseconds in order to penetrate the skin. As the
penetration depth is very sensitive to jet velocity [2], control
of the depth requires force control with better than 1 kHz
bandwidth.

There have been several efforts to construct jet injectors
with actuators that can provide this high-bandwidth control,
including voice coils [3], [4], mechanically-amplified piezo-
electric actuators [5], and even pulsed lasers [6]. While able
to achieve the goal of jet velocity control, these devices suffer
from a number of drawbacks: piezoelectric and laser pulse
systems are limited in the total drug volume they can deliver,
while voice coil systems are relatively large and heavy for
hand-held medical devices.

To date, there have been no comprehensive studies of
actuator design in the context of liquid jet delivery. While
dynamic models of injector behavior have been developed
for spring powered [7] and voice coil powered injectors [8],
[9], these models do not address the design of the actuator.
Instead, these models treat the actuator as an ideal device,
and cannot predict the size or weight of actuator that might
be required.

Here, we present a basic scaling model of the jet delivery
process, and couple it to an electromagnetic analysis of a
voice coil actuator. By minimizing the power consumption
of the actuator at a fixed actuator mass, while allowing
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Fig. 1. A basic schematic of a voice-coil-driven jet apparatus. The
maximum working length of the cylinder, L, is typically also equal to the
maximum usable stroke of the actuator; the relative values of the cylinder
diameter D and the working length determine the power required to operate
the system.

the piston diameter, stroke length, and actuator internal
dimensions to vary, we show that the optimal voice coil
design for jet delivery is scale invariant. We then validate
this design method by demonstrating jet delivery by a motor
built to its specifications.

II. SCALING OF JET PRODUCTION

Fig. 1 shows a simplified schematic of a jet-producing
apparatus, with a fluid-filled cylinder, an output nozzle, and
a voice coil actuator driving a piston in the cylinder. For
simplicity, we will ignore the influence of friction; it has been
shown in the context of jet injection [5], [7] that friction has
little influence on steady-state jet production. (Furthermore,
inclusion of friction via an orifice discharge coefficient [10]
does not alter the scaling relationships.) In this case, the
actuator force F and the jet velocity v can be related as
follows:

F =
π

8
ρv2D2, (1)

where ρ is the density of the fluid being delivered and D is
the diameter of the cylinder.

We can then combine this relation with a scaling model for
the actuator so as to determine the power and energy required
for jet production. For permanent magnet motors, the energy
conversion efficiency is described by the motor constant Km,
the ratio of the force developed to the square root of the
power dissipated. This leads directly to an expression for
the power dissipation P required for jet production by a
permanent magnet motor:

P =
ρ2V 2v4

4K2
mL

2
, (2)

where V is the volume to be delivered and L is the working
length of the cylinder, as well as the stroke length of the
motor. This scaling relationship suggests that a combination
of a small delivery volume and a very high-performance
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motor are required for physically reasonable systems. For
instance, the delivery of 1 mL of water at 150 m/s from a
cylinder 30 mm long, using a motor specified at 10 N/

√
W,

requires 1400 W of power.
In order to complete the scaling picture, we need to have

some idea of the relationship between motor size and motor
constant. It can be shown [11] that the motor constant scales
with the square root of the motor mass M :

Km = BremK̂m

√
σM

ρc
, (3)

where Brem is the remanence of the permanent magnets,
σ and ρc are the electrical conductivity and density of the
wire conductor (typically copper), and K̂m is a dimension-
less parameter describing the internal magnetic and electric
geometry of the motor. (Note that non-dimensionalized quan-
tities throughout this paper are denoted by hats.) We can thus
determine the overall scaling behavior for the jet-production
system, neglecting constant factors and material properties:

P ∝ V 2v4

ML2K̂2
m

. (4)

Typically, ρ, V , v, and d are determined by the application of
the jet, and the power P is limited by the power amplifier,
but the aspect ratio of the cylinder (i.e. L) can be freely
varied and minimization of the actuator mass M is desired.

For voice coils, the stroke length is closely related to the
relative magnet dimensions, which in turn determine K̂m.
Thus, there may be an optimum choice for L that minimizes
P for a given mass. (For other motor types that employ
a spatially periodic structure, this linkage is absent; the
scale of the repeat units and the number of units employed
are independent design parameters, and the mass can be
minimized by designing as long a motor as is practical.)
To determine the optimum stroke, we will need to couple
the scaling model to an electromagnetic model that can
determine K̂m.

III. ELECTROMAGNETIC MODEL

In order to determine an appropriate voice coil electromag-
netic model, we must first select the general motor topology
of interest. Traditional voice coil actuators employ a topology
with magnets and an iron pole piece located centrally within
an iron casing that serves as a flux return path. As the
iron pole piece may pose saturation and demagnetization
problems at high currents (and thus high forces), we instead
chose to consider a quasi-Halbach topology, as shown in
Fig. 2, that replaces the iron pole piece with a set of radially-
oriented magnets. The symmetric motor structure shown here
eliminates fringing fields and thereby uses its magnets more
efficiently.

The quasi-Halbach motor can be directly modeled via
Maxwell’s equations, if the iron can be considered infinitely
permeable—the endcaps enforce periodic boundary condi-
tions, and models developed for slotless linear synchronous
motors can be used, e.g. [11]–[13]. Here, we will briefly

Fig. 2. In this quasi-Halbach motor topology, the coil (orange) is
mechanically connected to the load via supports that penetrate one end
cap (not shown). (Arrows indicate the direction of magnetization in the
permanent magnets.)

illustrate a numerically stable analytical model for the quasi-
Halbach voice coil based on the modified Struve function
[14]. Finite element models will also be presented to pro-
vide guidance as to the validity of the infinite-permeability
assumption.

A. Semi-Analytical Model

Due to the linear behavior of rare earth permanent mag-
nets [15], we can directly use a Fourier series solution of
Maxwell’s equations to determine the motor performance
from its dimensions. Let the length of the radial magnets
be given by 2Lr and the length of the axial magnets be Lm;
we can then define the length ratio δ ≡ Lr/(Lr + Lm).
Following the procedure in [16], we can determine the
magnetization components

M̂rn =
2

nπ
sin

(
nπδ

2

)(
(−1)

n+1
+ 1
)
, (5)

M̂zn = − 2

nπ
cos

(
nπδ

2

)(
(−1)

n+1
+ 1
)

, (6)

where M̂rn and M̂zn are the dimensionless radial and axial
magnetizations, respectively, at harmonic order n, and the
spatial wavenumber k is given by k = π/(2Lm + 2Lr).
The symmetry of the motor dictates the absence of even
harmonics from the magnetization pattern.

The solutions to Maxwell’s equations for this set of bound-
ary conditions and magnetizations can be most expediently
written in terms of a function based upon the modified Bessel
function of the first kind Iν(x) and the modified Struve
function Lν(x),

Λν(x) ≡ π

2

(
Iν(x)− Lν(x)

)
, (7)

that possesses computationally efficient series representations
[17]. To solve for the field coefficients, it is helpful to define
a further set of auxiliary functions:

LI(x) ≡ x (Λ1(x) I0(x)− Λ0(x) I1(x)) , (8)
LK(x) ≡ x (Λ1(x) K0(x) + Λ0(x) K1(x)) , (9)

where Kν(x) is the modified Bessel function of the second
kind. These functions are closely related to the integrals of
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the modified Bessel functions of zero order [17]. The field
coefficients in the coil region can then be found as

bn = M̂rn LI(nkrm)− nkrmM̂zn I1(nkrm) , (10a)

an = bn
K0(nkrfi)

I0(nkrfi)
, (10b)

where the field harmonic components in the radial and axial
directions are given by

B̂rn = an I1(nkr) + bn K1(nkr) and (11a)

B̂zn = −an I0(nkr) + bn K0(nkr) , (11b)

respectively, rm is the radius of the magnets, and rfi is the
radius at the inside of the iron shell.

With the magnetic field completely defined, the force
produced by the motor can be determined by integrating the
radial component of the field over the coil volume:

F = BremJ

∞∑
n=1

2πf̂n
n3k3

(
sinnk

(
z′c +

Lc
2

)
− sinnk

(
z′c −

Lc
2

))
,

(12)

f̂n ≡ an (LI(nkrco)− LI(nkrci))
− bn (LK(nkrco)− LK(nkrci)) ,

(13)

where z′c is the coil position with zero defined to be centered
in the motor, Lc is the length of the coil, and rci and rco are
the radii at the inner and outer edges of the coil, respectively.

In order to determine the dimensionless motor constant
K̂m, we also need to determine expressions for the power
dissipation and mass of the motor. The power can be calcu-
lated easily from the coil volume,

P =
πLcJ

2
(
r2co − r2ci

)
σ

, (14)

but in order to find the motor mass we must estimate the
thickness of the iron shell. We can do so by first determining
the maximum flux in the iron shell, then calculating the
cross-sectional area needed for a given saturation flux density
Bsat. The flux can be determined by integrating the radial
field over half of the motor length:

Φ0 = rfiBrem

∞∑
n=1

2π (−1)
n−1
2

nk

[
an I1(nkrfi)

+ bn K1(nkrfi)
]
. (15)

The overall motor mass can then be calculated as

M = 2πρmr
2
m (Lm + Lr) + πρcLc

(
r2co − r2ci

)
+

2ρfΦ0

Bsat

(
Lm +

Φ0

πrmBsat
+ Lr

)
+

2ρfΦ0r
2
fi

rmBsat
, (16)

where ρm and ρf are the densities of the magnet and
iron, respectively. Finally, while the governing equations
themselves can be non-dimensionalized, in this case it is
more convenient to use the definition of the motor constant
to determine K̂m:

K̂m =
F

Brem

√
ρc

σMP
. (17)
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Fig. 3. Forcing saturation of the iron components of a quasi-Halbach motor
results in an improved dimensionless motor constant due to reduced mass.
(The performance reference is calculated for Bsat = 2 T.)

B. Iron Saturation

The performance of this analytical modeling approach in
describing ironless motors has been illustrated in [11], [16],
but a key issue in applying the method to voice coils is the
choice of nominal saturation flux density Bsat. Choosing a
low saturation flux makes the motor heavy, while choosing
a higher value may reduce force production.

To illustrate this effect, Fig. 3 shows the relative perfor-
mance at mid-stroke and low current density (106 A/m2)
for a motor with rm = 10 mm, rfi = 13 mm, rci =
10.5 mm, rco = 12.9 mm, Lr = 5 mm, Lm = 35 mm, and
Lc = 40 mm over a range of different nominal saturation
fluxes, as calculated via finite element analysis (FEA). (The
magnets are given a remanence of Brem = 1.334 T.) For
these dimensions, the best motor performance at mid-stroke
is obtained when the iron is entirely removed; the mass
penalty due to iron is slightly more significant than the
reduction in force production from removing it. Allowing
the iron to be saturated also tends to reduce the reluctance
force near the ends of the stroke [14]; as a compromise, the
remaining analyses and designs use Bsat = 4.0 T.

C. Optimization

Using Eqn. 17 for the dimensionless motor constant and
Eqn. 4 for the power required to perform an injection, we
are equipped to determine the power-optimal motor design.
The natural choice of objective function is to maximize the
product LK̂m for a fixed motor mass, as increasing the motor
size always reduces the power requirement. The remaining
free parameters for the motor design are rm, rfi, δ, L, and
Lc; we set the coil radii based on fixed clearance distances
(0.5 mm inside and 0.1 mm outside) from the magnet and iron
shell. (A more detailed version of the electromagnetic model
allows for hollow magnets, the effect of practical segmented
radial magnets, and the fill factor of the coil winding [14],
parameters that are also held fixed for optimization.)

Fig. 4 illustrates the results of this optimization process,
based on the motor constant with the coil positioned at
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Fig. 4. The optimum stroke length (right) scales with the linear size of the
motor: stars indicate optimization results, while the dotted line is a guide to
the eye proportional to M1/3. Using the optimized dimensions for a motor
that delivers a volume of 300µL, the power required to deliver a 200 m/s jet
is shown by dots via the left axis, with a guide line proportional to M−5/3.

the quarter-stroke position, z′c = L/4. (Optimization at
mid-stroke favors motors with large variations in motor
constant over the stroke, while optimization at the end of the
stroke sacrifices a large amount of average motor constant to
provide very modest improvements in the minimum motor
constant.) The optimal value of L scales with the linear
dimensions of the motor, or as M1/3, in spite of the fixed
clearance distances, as do the other geometric parameters.
So long as the clearance is small enough to ignore, there
is a single optimal configuration for a quasi-Halbach voice
coil with a scale-invariant dimensionless motor constant.
The dimensions can thus be selected based on the desired
motor mass. As a result, the overall power required scales
as M−5/3, deviating slightly at low masses due to the more
deleterious effect of the clearance gaps in small motors.

IV. INJECTOR DESIGN

Using the optimization results, the motor design appro-
priate for an off-the-shelf ampoule (Injex part #100100,
30 mm stroke, 300µL volume) was selected. The resulting
motor dimensions are rm = 8.00 mm, rfi = 12.71 mm,
rfo = 13.48 mm, rci = 8.50 mm, rco = 12.61 mm, Lr =
3.80 mm, Lm = 36.0 mm, and Lc = 39.8 mm, with a 3.8 mm
central hole through the magnets (grade N42SH) to allow for
structural support, and end caps 1.25 mm thick. The detailed
model predicts a motor constant of 3.6 N/

√
W for this con-

figuration, and a motor mass of 230 g neglecting structural
components. A coil winding of 624 turns of 25 AWG wire
with heavy-build insulation was selected, giving a fill factor
of 62%, a coil resistance of 4.4 Ω, and a predicted force
constant of 7.6 N/A. (Including the effect of saturation via
FEA gives a motor constant of 3.1 N/

√
W, and a resulting

force constant of 6.4 N/A.)
In order to support the electromagnetic components of the

motor, as minimal a support structure as practical is desired.
Our solution is illustrated in Fig. 5, a cut-away rendering
of the complete injector. The iron end cap closest to the

Fig. 5. A cut-away view of the optimized motor design, showing the
bobbin and end-cap structure (center) as well as the drug ampoule (left)
and position sensor (top center).

ampoule has been shaped as a cross, with the arm thickness
increased to provide the correct total cross-sectional area
of iron for the specified saturation flux density. The coil
bobbin has a matching set of slots, allowing motion to be
transmitted beyond the end cap; for assembly, the end cap is
slipped through the slots and rotated into place. The motor
is held together by a non-magnetic M3 threaded rod that
passes through the magnets’ central hole. The ampoule is
secured to the motor by an aluminum cage that also holds
a linear potentiometer (ALPS RDC10) used to sense the
motor position. Electrical connection to the coil is made via
flexible wires coiled inside the cage and exiting adjacent to
the potentiometer.

V. RESULTS AND DISCUSSION

The complete injector system has a mass of 300 g, in-
cluding the ampoule and piston. Including a plastic case
(Fig. 6), trigger, and ancillary components, the resulting
injector handpiece has a mass of just 426 g, less massive
than the motor alone from [4].

The motor, as built, exhibits a force constant of 6.7 N/A,
as determined by back-EMF measurement at zero current.
This compares favorably with the FEA prediction, and is
only 12% lower than the prediction of the analytical model.
The performance was likely helped by the use of thicker
end-caps than called for by the model, due to mechanical
strength and manufacturing considerations.

The dynamic performance of the injector was measured
using a current-controlled capacitor discharge system, for
currents up to 45 A. Acceleration measurements of the un-
loaded motor and direct force measurements using a load
cell were consistent with the zero-current force constant for
all currents tested. The behavior of the injector is illustrated
by Fig. 7, showing the ejection of water from the ampoule at
a jet velocity of 150 m/s. (The jet velocity is estimated from
the coil position and the piston-nozzle area ratio of 381:1.)
The initial velocity peak is caused by the compliance of the
piston and ampoule and the abrupt current rise time.

VI. FUTURE DIRECTIONS

This work has provided guidance as to the relationship
between jet injector delivery volume, voice coil size, and
power consumption, based on the performance of an optimal
voice coil design. For larger delivery volumes, as might be
required for veterinary jet injector use, the model implies
that an impractically large actuator with a mass of several
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Fig. 6. The complete jet injector hand-piece has a mass of 426 g, and is
connected to its power amplifier via the cable in the handle.

kilograms is required. In order to build voice-coil-powered
injectors for large volumes, then, we must explore new
mechanical designs that can break the coupling between
the stroke length and the force required for a particular jet
velocity.

For small injection volumes, a miniaturized power am-
plifier capable of a 10 kW output (albeit briefly) is needed
to enable a self-contained hand-held jet injector. Work is
underway to develop such a system from the current source
used to test our voice coil, along with an accompanying high-
bandwidth position control system.
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