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Abstract— A non-contact vision-based system is presented for
continuous respiratory rate monitoring. The system identifies
feature points in a video feed and tracks them over time. Two
methods are presented for comparison - a method which uses
principal component analysis (PCA) and a simple averaging ap-
proach. These methods condense the feature point trajectories
into a compact set of representative signals. The signal which
most closely resembles an expected respiratory trace is selected
based on spectral analysis. System performance is assessed by
comparing the estimated respiratory rate to the rate determined
via inductance plethysmogram. The system was evaluated on
5 participants in 4 simulated sleep scenarios. Accuracies of
within 1 breath/minute were achieved for more than 97% of the
recorded time in all scenarios. The proposed system is accurate,
cost-effective, and simple, making it a suitable candidate for at-
home installation.

I. INTRODUCTION
The monitoring of respiratory activity is of great impor-

tance as changes can signal the deterioration of an indi-
vidual’s health. For continuous monitoring, commonly used
methods rely on measuring airflow (via nasal cannula or
face mask) or chest motion (inductance plethysmograph) [1].
While these methods are convenient for usage in a clinical
setting, they introduce discomfort and limit mobility, making
them suboptimal solutions for at-home monitoring. Non-
contact solutions are more suitable as they do not impose
physical constraints on the user. Continuous home monitor-
ing is particularly important for more vulnerable populations
such as neonates or the elderly, as respiratory failure during
sleep often precedes sudden infant death syndrome (SIDS)
or cardiac arrest [2, 3].

Previously investigated non-contact methods for measur-
ing respiratory rate include thermal imaging [4, 5], mi-
crowaves [6, 7], and ultra wideband radar [8, 9]. Unfortu-
nately, these methods require specialized equipment which
can be expensive and impractical for home usage. Computer
vision approaches have also been explored recently. Using
a video or camera feed, these methods are able to estimate
respiratory rate based on changes in colour or light intensity
[10, 11] or by tracking the motion of the chest cavity [12].

The objective of this study is to validate algorithms for
estimating respiratory rate based on motion data analysis.
This work adapts and modifies the method proposed by
Balakrishnan et al. for pulse detection based on head mo-
tions [13]. Since future applications of this system could
involve respiratory rate monitoring during sleep, various
scenarios that occur during sleep are simulated. The success-
ful implementation of a non-contact system for respiratory

*The authors are with the Toronto Rehabilitation Institute - University
Health Network, Toronto, ON M5G2A2, Canada. Corresponding author:
babak.taati@uhn.ca

(a) (b) (c) (d)

Fig. 1. Sleep scenarios tested. (a) Supine, (b) left side, (c) right side, (d)
supine, torso obscured.

rate estimation would significantly decrease discomfort for
individuals requiring continuous monitoring of vital signs
while providing valuable information for diagnosis of sleep
disorders.

II. METHOD

A. Experimental Setup

Five participants were recruited for this feasibility study
(3 women, 2 men, age = 31.2 ± 11.5 years, BMI = 23.0
± 1.8 kg/m2). Participants were asked to lie down on a
bed in the sleep laboratory which was kept dark to simulate
overnight sleep and was illuminated with infrared (IR) light.
Video data was recorded with a Point Grey 0.3 MP Firefly
MV camera (model number FMVU-03MTM) with an IR-
sensitive Micron M9V022199ATM image sensor. Videos
were recorded at a resolution of 640x480 pixels at 30 fps.
The camera was mounted on a tripod positioned 1.4 m above
the head of the bed, such that the head and torso of the
participant were in the view of the camera. Simultaneously,
respiratory inductance plethysmography was used to measure
chest and abdominal movements. These movements were
used to determine the respiratory rate which was used as
the gold standard for validation. The data was recorded with
the sleep laboratory’s polysomnogram system and Embla
Sandman software at a sampling rate of 85.3 Hz.

The experimental protocol included four different scenar-
ios, each lasting for five minutes. The scenarios were: lying
in the supine position, lying on the left side, lying on the right
side, and lying supine while the torso was obscured with a
white sheet (Fig. 1). Due to technical difficulties during one
of the recording sessions, only the five minute session of
lying supine was recorded for one participant. A total of 21
trials were analyzed.

B. Data Analysis

A computer vision based method is used to estimate the
respiratory rate via the processing of an IR video stream.
Several feature points are identified in the first video frame
and tracked over time. The processing of these motion
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trajectories reveals the chest motion induced by respiration.
The processing represents feature point trajectories in terms
of multiple motion signals and the signal which most closely
resembles a respiratory signal is chosen. The respiratory rate
is extracted as the peak of the frequency spectrum of that
component.

Video analysis is implemented in Python 2.7 and using
OpenCV 2.4.6. To avoid image segmentation and localization
of body parts, the frame is divided into a grid (10×13 cells)
and feature points are extracted in each grid section. A
feature point detector is applied in each cell to identify the P
most distinguishable points for feature tracking. By running
feature point selection separately for each grid section, the
set of feature points extracted is spread over the entire video
frame, ensuring that the chest motion will be captured in
various sleeping positions.

Features are tracked over time using optical flow. A sliding
window of length τ is processed to estimate the respiratory
signal. Within each window, feature trajectories are split
into their horizontal and vertical components and treated
separately. Points with erratic trajectories are discarded as
they may have been impacted by tracking errors. Similarly,
points with very little variation are excluded as these are
assumed to not be on the individual and therefore do
not provide any useful information. As a simple method
of discarding such points, the maximum frame to frame
displacement for each point is found and the top M-th and
bottom N-th percentile are discarded. To further filter out
feature trajectories, those with a range of motion less than
the mean are also discarded. As the window slides forwards,
a new respiratory rate estimate is computed every second.

Specific implementation details are selected empirically
for a combination of performance and efficient processing.
A Harris corner detector is used for feature point detection
while the Lucas-Kanade algorithm is used for point tracking
[14, 15]. Ten feature points are selected in each grid cell (P =
10). Discarded percentiles M and N are both set at 25% and
the sliding window is set to be half a minute long (τ = 30 s).

Two different methods of identifying respiratory related
motion from feature point trajectories were used, including a
simple averaging approach and principal component analysis
(PCA). Each method condenses the feature point trajectories
into a compact set of signals. The expectation is that the
signal with the highest periodicity is most representative of
the respiratory rate.

The averaging method generates three signals based on the
feature point trajectories by computing the average horizontal
trajectory, the average vertical trajectory, and the average
displacement trajectory. These signals are passed through
a 5th order Butterworth filter chosen for its flat passband.
The passband used was [0.1, 1.0] Hz, equivalent to 6-
60 breaths/minute. Signals are convolved with a Hamming
window to reduce edge effects before performing a fast
Fourier transform (FFT) for spectral estimation. The most
periodic of the three signals is selected as the one with the
highest ratio of spectral power in its peak relative to the rest
of the spectrum. The frequency at which maximal power

occurs is taken as the respiratory rate.
Alternatively, PCA decomposes the feature point trajec-

tories into a set of linearly uncorrelated signals. Before
applying PCA, the horizontal and vertical trajectories are
pooled together and passed through a 5th order bandpass
Butterworth filter with a passband of [0.1, 1.0] Hz. An
expectation-maximization (EM) implementation of PCA is
used as it circumvents computation and diagonalization of
the sample covariance matrix as required in traditional PCA
[16]. These operations can become prohibitively expensive
when the number of features is large. To avoid this computa-
tional bottleneck, the C principal components which explain
the most variance in the original dataset were iteratively
computed using the EM implementation. For all reported
results, C = 10.

Similarly to the averaging method, principal components
are convolved with a Hamming window and spectral esti-
mation is performed using FFT. In the absence of motion
artifacts, it was empirically determined that the component
with the highest variance generally provides better estimates
than the most periodic component, so it is chosen for the
initial estimate. Therefore, for the initial respiratory rate,
the component with the highest variance is used and the
frequency value of its peak in the spectrum is taken as the
initial respiratory rate.

For subsequent estimates, the predicted respiratory rates
from the component with the highest ratio of peak to total
power (i.e. the most periodic component) and the component
which explains the highest variance are both calculated.
These two values are compared to the previous estimate and
the prediction which is closest to the previous estimate is
chosen. The reasoning for this approach is two-fold. PCA can
often extract highly periodic components which explain very
little variance in the original data. However, the component
which explains the most variance will be most affected by
participant voluntary motion (e.g. tossing and turning at
night) which can lead to an inaccurate estimate. Estimation
accuracy is therefore improved by the combination of these
two methods. This approach relies on the assumption that
changes in the respiration rate are generally slow in compar-
ison with the update rate of 1 Hz. It is also assumed that no
motion artifacts affect the first 30 seconds of video.

Estimates from the vision-based system were compared to
estimates generated from the plethysmograph data. Since the
plethysmograph data was in the form of a respiratory trace
and not respiratory rate, the respiratory rate was extracted
by applying the same Butterworth filter and FFT used for
the vision-based system. The frequency corresponding to the
maximal power in the frequency spectrum was taken as the
ground truth respiratory rate.

III. RESULTS

Fig. 2 provides an example of the predicted respiratory
rate versus the ground truth respiratory rate. While there were
sharp transitions that existed in the respiratory rate as a result
of the FFT, the predicted rate was still accurate compared to
the true rate.
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TABLE I
RESPIRATORY RATE ESTIMATION RESULTS USING AVERAGING AND PCA METHODS

Supine Left Right Obscured Average

RMS Error
(breaths/minute)

Averaging 0.84 ± 0.30 0.79 ± 0.48 0.94 ± 0.84 1.50 ± 1.24 1.02 ± 0.85

PCA 0.67 ± 0.34 0.66 ± 0.32 0.81 ± 0.81 0.81 ± 0.64 0.74 ± 0.57

% prediction within ±
1.0 breaths/minute

Averaging 96.5% ± 2.3% 96.8% ± 3.1% 97.8% ± 1.8% 86.1% ± 15.7% 94.3% ± 9.4%

PCA 97.2% ± 1.3% 98.1% ± 0.9% 98.4% ± 2.0% 97.0% ± 3.6% 97.7% ± 2.3%

% prediction within ±
0.5 breaths/minute

Averaging 90.8% ± 5.0% 92.8% ± 4.0% 93.2% ± 4.6% 80.7% ± 19.4% 89.4% ± 11.7%

PCA 92.3% ± 3.8% 95.2% ± 1.1% 94.9% ± 3.7% 95.3% ± 4.1% 94.7% ± 3.6%

% prediction within ±
0.25 breaths/minute

Averaging 76.2% ± 7.5% 79.8% ± 5.9% 77.1% ± 11.2% 66.8% ± 18.1% 75.0% ± 12.7%

PCA 81.2% ± 5.5% 83.9% ± 2.1% 80.4% ± 10.2% 86.4% ± 5.4% 83.0% ± 6.9%
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Ground Truth Motion Tracking

Fig. 2. Example of motion tracking based respiratory rate estimation
compared to ground truth for a 5 minute video.
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Fig. 3. Comparison of respiratory rate estimation results from averaging
and PCA methods. Error bars are standard error.

A summary of results (± standard error) is provided in
Table I. The RMS error between the vision-based system and
the ground truth was computed, as well as the percentage of
estimates which were within 1.0, 0.5 and 0.25 breaths/minute
of the true respiratory rate. Comparing the two methods (Fig.
3), the PCA-based approach was more accurate than the
averaging approach and had reduced average RMS error and
standard error.

For both methods, estimates were better for left and right
lateral positions versus supine which lends some credence

to the notion that estimation will be worse if motion is
primarily in the axis of the camera lens. In the obscured
scenario, the sheet may make motion tracking more difficult
as it distributes the motion in different directions, i.e. motions
in opposite directions will cancel each other when averaged.

IV. DISCUSSION

In this study, a highly accurate system was developed for
detecting respiratory rate with no contact to the patient. The
results indicate that for supine, lateral and obscured supine
positions, the PCA-based method can detect respiratory rate
with less than 1.0 breaths/minute error in more than 97% of
cases. These results provide strong evidence that this system
can be applied for detecting respiratory rate with minimal
interference to the subject’s normal lifestyle.

In order for a system to be attractive for implementa-
tion in a domestic environment, it must fit certain criteria.
The American Academy of Sleep Medicine identified six
key considerations for portable monitoring systems: safety,
ease of use, reliability, durability, economy and diagnostic
accuracy [17]. Our system is safe and easy to use as it
requires minimal setup and the non-contact nature eliminates
any hazards associated with wires or probes connected to
the user. Durability of system components would be high
since there is no need to reposition the system regularly
and no moving parts that would result in cable tugging.
Our results demonstrate that the system has high accuracy
when compared to the true respiratory rate and is reliable
for multiple participants in different scenarios. The cost of
the system is low as the required camera specifications could
be easily reached with a standard webcam or mobile device
provided they can capture IR light.

Optical flow methods are criticized as being poor in areas
of high homogeneity, making them unsuitable for sleep
monitoring [18]. However, the results show that there is no
need for textured surfaces for an optical flow based respi-
ratory monitoring system to achieve high accuracy. While
the tested detection distance is only 1.4 m, it is expected
that increasing the resolution of the camera would allow for
better discernibility of small motions, improving the range
of operation.
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The choice of FFT for spectral estimation provides a crude
way of predicting the respiratory rate. FFT assumes that
data is stationary, which may not be true for physiological
signals. However, it is useful for providing a numerical value
of respiratory rate for comparison. A correlational analysis
of true and predicted respiratory traces would be a stricter
measure of prediction accuracy and would validate FFT
results.

An inherent limitation of the current setup is that the
camera is placed above the person, meaning that motions
of the chest cavity in supine position may be significantly
decreased when projected into the plane of the camera’s view.
Placing the camera at an angle or using a depth camera would
alleviate this issue.

The results of our experiments may have been influenced
by multiple factors. The respiratory trace was recorded at
85.3 Hz and had to be downsampled to 30 Hz to match the
video frame rate. This downsampling may have introduced
errors into the respiratory signal. In addition, the camera
used includes software which automatically adjusts gain and
contrast during recording, sometimes resulting in flashing.
Since the flashing generally occurred at a rate much higher
than the band pass filter that was applied, it is not expected to
have significantly influenced results. However, the magnitude
of its impact is unknown. Disabling of the auto gain and auto
contrast functions is recommended for future recordings.
Lastly, the experiment represents only a simulated sleep
recording. Sleeping individuals will breathe less deeply and
have more variable respiration depth than when they are
awake, which could present a more difficult signal processing
challenge [19]. Individuals who are awake are also volun-
tarily controlling their respiratory rate, meaning that it is
more likely that sudden spikes can occur. This breaks the
assumption of our algorithm that respiratory changes will be
slow, and may have led to inaccurate estimation.

While the results of the system are promising, it is not
possible to draw any strong conclusions regarding which
method or which positions have higher accuracy. Due to
the small sample size available, any statistical significance
testing will have very little strength. This will be addressed in
the future as data is collected for more participants. Although
the more accurate method cannot be identified based on
current information, there are additional factors to account
for besides accuracy. PCA has been successfully used for
extraction of physiological signals and is adept at identifying
underlying signals from noisy data [12, 13]. The averaging
approach has a much lighter computational load than PCA,
but it also has a decreased ability to handle signal noise
caused by extraneous motion such as sudden deep inhales or
exhales.

V. FUTURE WORK

For future work, experiments will involve multiple cam-
eras to provide more consistent motion information regard-
less of the person’s orientation. The ability of the sys-
tem to measure respiration depth will also be investigated.
Additional trials will be performed with thicker blankets

as these may impact system performance. Trials will also
be performed on sleeping subjects to determine how the
system performs when respiratory depth is decreased. One
of the most important future applications of this system is
continuous monitoring of sleep breathing disorders such as
sleep apnea.
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