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Abstract—The mirror neuron system (MNS) in humans is 

thought to enable an individual’s understanding of the meaning 

of actions performed by others and the potential imitation and 

learning of those actions. In humans, electroencephalographic 

(EEG) changes in sensorimotor -band at central electrodes, 

which desynchronizes both during execution and observation of 

goal-directed actions (i.e.,  suppression), have been considered 

an analog to MNS function. However, methodological and 

developmental issues, as well as the nature of generalized  

suppression to imagined, observed, and performed actions, 

have yet to provide a mechanistic relationship between EEG -

rhythm and MNS function, and the extent to which EEG can be 

used to infer intent during MNS tasks remains unknown. In 

this study we present a novel methodology using active EEG 

and inertial sensors to record brain activity and behavioral 

actions from freely-behaving infants during exploration, 

imitation, attentive rest, pointing, reaching and grasping, and 

interaction with an actor. We used -band (1-4Hz) EEG as 

input to a dimensionality reduction algorithm (locality-

preserving Fisher's discriminant analysis, LFDA) followed by a 

neural classifier (Gaussian mixture models, GMMs) to decode 

the each MNS task performed by freely-behaving 6-24 month 

old infants during  interaction with an adult actor. Here, we 

present results from a 20-month male infant to illustrate our 

approach and show the feasibility of EEG-based classification 

of freely occurring MNS behaviors displayed by an infant. 

These results, which provide an alternative to the-rhythm 

theory of MNS function, indicate the informative nature of 

EEG in relation to intentionality (goal) for MNS tasks which 

may support action-understanding and thus bear implications 

for advancing the understanding of MNS function. 

I. INTRODUCTION 

The discovery of mirror neurons in area F5 of the 
macaque monkey brain by Rizzolatti and colleagues [1] is 
considered one of the most influential neuroscience 
discoveries by challenging the notion of segregate sensory 
and motor functions in the brain. This suggested that action 
observation and action performance, by sharing the same 
neural network substrates, enabled individuals to understand 
other's people actions and experiences.  In humans, the 
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hypothesized MNS system has been studied extensively 
using scalp EEG. These studies have used changes in 

sensorimotor -rhythms, also known as the -rhythm, to be a 
primary electrophysiological marker of MNS function in 
human infants and adults [2]. Unfortunately, several 
developmental (e.g., how these infants come to understand 
and acquire their first actions and the paucity of MNS data in 
infants) [3], [4] methodological [2], [5], and interpretive [6] 
issues need to be addressed to advance our understanding of 
human mirror neuron function. 

Moreover, while studies are necessarily targeted to 
address specific questions in highly controlled lab 
environments, it is increasingly recognized that the processes 
being measured clearly do not occur in isolation and that 
these environments do not represent the daily behaviors of 
these infants at home or at play. Virtually all experimental 
studies in humans involve multiple cognitive components. 
Movement, language and memory underlie much of our 
existence. Subjects performing an experimental task must 
understand the task instructions, store them in memory, and 
retrieve them at the appropriate times. These processes, in 
turn, require executive control. Finally, competing intentions 
must be prioritized, sequenced, and translated into motor 
output, whether in the form of speech or movements. Such 
actions are often benefitted from extended practice and are 
formed and refined during development. Indeed, 
developmental considerations often blur these components, 
and thus they add to the problem. Thus, it is unclear how the 
above processes are accomplished in the developing infant 
brain. To address some of these issues, we have developed a 
novel experimental methodology to test freely-behaving 
infants while acquiring accurate information about brain 
activity and movement thru non-invasive means. We then 
deploy advanced machine learning methods to infer 
behavioral state or intent via scalp EEG. 

The classification and prediction of movement intent 
using invasive ECoG and non-invasive EEG methods has 
long been studied, usually in research related to the fields of 
brain-computer interfaces and neuroprosthetics [7], [8]. 
However, such studies generally focus on the prediction of 
the kinematics of functional movements; the prediction of 
emotional, expressive, and contextual properties of 
movements has not been as well studied [8], even though 
such properties can affect the kinematics of a motion [9]. To 
the best of our knowledge, although the neural basis of the 
action-intention has been studied, especially during changes 

in rhythm [10], little is known of this basis in infants. This 
gap in our knowledge raises many questions that could be 
addressed in future studies, such as how kinematics and 
neural activity could be used to uncover the mechanisms 
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behind movement intention and motor planning as well as the 
complexity of the intention (e.g. emotion, purpose, etc.) of 
the developing brain of an infant [11]. Before answering 
these questions, however, we must first demonstrate the 
feasibility of using high-density scalp EEG to decode goal-
oriented movement intentions in freely-behaving infants. 

In this case study, we analyzed a 15-minute session of the 
interactions between the infant subject and the experimenter 
or actor. We then segmented the infant’s actions into 6 
classes: wakeful attentive rest, pointing, reach-to-grasp, 
reach-to-give, and manipulating an object to either explore its 
characteristics or to imitate an action performed by the 
experimenter. We first conducted an exploratory analysis of 
both neural and motion activity data to examine any evidence 
of motion artifacts. Classification of movements were further 
conducted using a two-step machine learning algorithm that 
reduces the dimensionality of our feature space of EEG data 
while preserving local features and then generating statistical 
models to fit and validate the success rate of classifying 
movement intentions of the infant. 

II. METHODS 

A. Experimental Design and Data Acquisition  

Seven healthy infants (four female, three male) were 
recruited and given informed consent by their parent(s) or 
guardian as subjects for this study. Each infant’s age ranged 
from 6 to 24 months. Here, we focus on the analysis of a 20-
month male infant. Multiple streams of data were acquired 
synchronously during the experiment. Neural activity was 
recorded using a 64-channel, active electrode EEG scalp cap 
sampled at 1000 Hz (BrainAmpDC with actiCAP, Brain 
Products, GmbH). The electrode sets were labeled according 
to the 10-20 international electrode montage system with FCz 
and AFz labeled as reference and ground, respectively. 
Motion was captured using four inertial measurement units 
(IMUs) sampled at 128 Hz (OPAL, APDM Inc., Portland, 
OR) attached to the head, trunk, and arms of the subject. 
Gravity-compensated (GC) triaxial acceleration data was 
estimated by applying a Kalman filter to predict IMU 
orientation within a global frame and removing the effects of 
acceleration due to gravity [12]. In order to conduct a visual 
inspection of the experiment and select behavioral actions of 
interest, we recorded the experiment with a video camera 
(SDR-H100, Panasonic Co.). 

The subject was seated in front of the experimenter/actor 
with a small table. Throughout the testing session, the 
experimenter gave to the subject a series of 14 toys and 
various objects to interact and play with at random sequence. 
The experimenter would also interact with the toys and show 
the subject how to play with some of the toys (e.g. winding 
up a wind-up toy). After testing, the video was visually 
inspected and the subject’s behavioral actions were divided 
into six classes (shown as task {number of trials, number of 
samples}) described below and depicted in Fig. 1:  

Attentive Rest {17 trials, 7595 samples}: A neutral state of 

wakeful attentive observation containing minimal to no movement. 

Point {10 trials, 922 samples}: The use of the index finger to 
avert the other person’s (in this case, the experimenter) gaze. 

Reach-Grasp {34 trials, 9077 samples}: Producing a reaching 
motion in order to grasp the object (toy). 

Reach-Offer {24 trials, 2740 samples}: Producing a reaching 
motion in order to offer back the object (toy) to the experimenter. 

Explore {31 trials, 16552 samples}: A brief interaction with 

the held object to examine its features and is usually performed 

instead of ‘Imitate’. 

Imitate {15 trials, 1966 samples}: The successful imitation of 
the experimenter’s maneuver of the object. 

B. Pre-processing of EEG 

EEG and GC-magnitude acceleration from the entire 
session were truncated using the start and end-session 
triggers synchronized to all data streams, including the video 
recording. Start and end time points were recorded for 
various trials of each task throughout the video and used to 
develop a target class time vector for classification analysis 
as illustrated in Fig. 2. The number of time samples for all 
classes constituted 42.25% of the total time of the truncated 
session. EEG electrodes, or channels, with high impedance 
(defined as the frequency-dependent opposition to alternating 
current flow at the scalp-electrode interface) values (AF7, Cz, 
C2, C3, C5, CP4, P2, P6, P8, PO3-4, PO7-8) [Z > 60 kΩ] and 
peripheral channels (FP1-2, AF7-8, F7-8, FT7-10, T7-8, TP7-
10, P7-8, PO7-8, O1-2, Oz, PO9-10) were rejected from the 
electrode set, leaving us with 32 channels to use for further 
analysis. Both EEG and acceleration were then resampled to 
100 Hz and compared by computing a spectrogram and short-
time coherence of selected channels of data to examine any 
effects of motion artifacts possibly affecting the EEG signal. 

Before decoding, EEG signals were then band-pass 
filtered within the delta frequency band (1 – 4 Hz) using a 
3rd order, zero-phase Butterworth filter. A lag-based feature 
matrix was then constructed by selecting an initial time point 
(t1) at 100 milliseconds leading the actual start time (t0 = t1 - 
100) of the signal and decremented every 10 milliseconds (t1, 
t1-90, t1-80, t1-70,…, t0) thus resulting in 10 lags per channel. 
All lags per channel were concatenated and standardized by 
feature to form our feature matrix for the classifier.  

C. Cross Validation 

 
Figure 1. Depiction of each task performed by the freely-behaving 

infant. Task-based classes shown are: a) Attentive Rest, b) Point, c) 

Reach-Grasp, d) Reach-Offer, e) Explore, and f) Imitate. 
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Figure 4. Training Set-Normalized Confusion 
Matrix. (Overall mean accuracy of 80.50 ± 
1.03%. Percentages reflect the ratio between 
the number of samples classified and the 
number of testing samples per class. 
Adjustable LFDA parameters were optimized 
to r {number of reduced dimensions} = 200 
and knn {number of k-nearest neighbors} = 11. 

To reduce bias and to minimize the potential effects of 
artifacts, time sample data of each class were selected 
separately at random for training and testing the classifier. 
Given the variation of samples size per class, the training set 
size was chosen to be a percentage of the smallest class 
sample size. 50% of this sample size was used for training 
and the remaining 50% for testing. All randomly selected 
samples were selected either for training or testing the 
classifier, hence no overlapped samples. 

D. Classification Algorithm 

The Local Fisher’s Discriminant Analysis-Gaussian 
Mixture Modeling (LFDA-GMM) algorithm has been 
employed in multiple studies [8], [13] and shown to be a 
robust and proficient tool for reducing the dimensionality of 
the lagged-based EEG feature space into a classifiable 
multimodal subspace in both offline and online analyses. It 
operates by first executing LFDA and computing a 
transformation matrix to limit the number of features to a 
reduced set of dimensions by minimizing the variance of 
samples within-class and maximizing the variance between 
classes while maintaining the each class sample’s locality. 
Mathematical derivations proving and testing this method are 
further explained in studies by Sugiyama [14]. 

Classification of each task was conducted by fitting a 
distribution of random training samples into a cumulative 
model of one or more Gaussian distributions, each with its 
own factoring weights (αk), covariance (Σk), and means (μk), 
as governed by the probability density function (pdf)            

 p(x) =  kKk k),  

 where the function k is defined as 

 k(x) = exp{-0.5(x-k)
T
 k


(x-k)}]/[(2)

d/2
|k|

1/2
] 

An estimation-maximization (EM) algorithm was then 
employed to converge upon the set for each of the three pdf 
(1), (2) parameters and Bayes Information Criterion (BIC) 
used to determine the optimal set of K Gaussian distributions 
for a particular class [13]. Posterior probabilities were 
calculated for each test sample based on the class-defined 

GMM such that any given sample could contain likelihood to 
fall within a particular class. The maximum posterior 
probability was chosen per test sample to discretize each 
class and compute classification accuracy rates. Additional 
information can be provided here [8].    

III. RESULTS 

A. Motion Artifact Analysis 

Due to the unconstrained nature of the infant’s actions, 
we analyzed and compared the frequency content of both 
EEG and acceleration data from the IMUs to observe any 
spectral relationships between EEG and acceleration. Since 
any movement-related artifacts would most likely originate 
from head movement, only acceleration information from the 
head sensor was acquired for further analysis in this paper. 

We computed the coherence, or relationship between two 
signals within the frequency domain, in a manner similar to 
the short-time Fourier transform in order to generate the 
coherence spectrogram plot displayed in Fig. 3. High 
coherence values indicate a strong relationship between the 
two analyzed signals, as is the case between the head 
acceleration and each corresponding EEG electrode within 
the 0.1 – 1 Hz range. Since this strong relationship may be a 
result of low frequency artifacts, only frequencies between 1 
– 4 Hz (higher in the delta frequency sub-band) were band-
pass filtered for further neural decoding analyses.  

B. Infant Task Classification 

Decoding resulted in an overall mean accuracy of 80.50 ± 

1.03%, which was well above the chance level of 16.67%. 

Ten iterations of the random sub-sampling cross validation 

procedure (Fig. 2) were performed to provide the mean 

classification 

accuracies. By 

observing the 

percentage of 

(mis) classified 

samples relative 

to each training 

set size per class, 

a training set-

normalized 

confusion matrix 

was generated as 

shown in Fig. 4 

where each block 

contains a 

percentage of 

training set 

samples either 

classified or 

misclassified to 

its respective 

class. We note high percentages along the diagonal of this 

matrix indicating a high degree of accurate classification for 

each class. Misclassification was more apparent for 

‘explore’ (0.8-21.1%), ‘reach-grasp’ (1.7-14.3%), and 

‘attentive rest’ (0-8.2%), unlike the low misclassifications of 

‘point’ (0%) and ‘imitate’ (0-0.1%) actions. 
 

Figure 2. Flowchart. (Neural decoding of behavioral intent from EEG.) 
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The most informative channels were revealed by applying 

a forward selection method [15] to each channel and were 

located primarily in motor and premotor areas, specifically 

channels FC6, FC3, C1, FC4, and F5. 

IV. DISCUSSION 

Our results demonstrate the feasibility of decoding goal-
oriented (intentional) behavioral actions from scalp EEG in 
freely behaving infants. These results show that scalp EEG 
contain valuable predictive information about the infant's 
intent. Though only a case study, our results already start to 
provide insights on how goal-oriented actions may be 
represented in brain activity as measured with scalp EEG. 
Further, goal-directed tasks such as point and imitate yielded 
higher classification accuracies than tasks without a clear end 
goal such as explore and rest. Thus, tasks such as imitate or 
point may have simply performed better because the infant 
presented a clear and direct objective/goal in his or her mind, 
whereas the confusion in classifying explore and attentive 
rest tasks may be indicative of the infant’s attempts to 
understand the environment or the intent of the experimenter. 
In summary, the proposed novel methodology provides a 
window to study the neural activity underlying mirror neuron 
system (goal-oriented) tasks in freely behaving infants. It also 

suggests an alternative to the -rhythm account of MNS 
function by providing a predictive, network-based account of 
intentionality in freely behaving infants based on scalp EEG. 
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Figure 3. Coherence Spectrogram. Coherence values indicate the relationship between EEG channels and head IMU acceleration. High coherence is 

noticeable within the 0.1 – 1 Hz range. Dotted white lines indicate the band-pass frequency cutoffs( 1 – 4 Hz) to avoid contamination of motion-related 

artifacts. The plot represents a subset of acquired data but all actions showed the same pattern of coherence. 
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