Haptic fMRI : Using Classification to Quantify Task-Correlated Noise
during Goal-Directed Reaching Motions

Samir Menon!, Paul Quigley!, Michelle Yu'!, and Oussama Khatib'

Abstract— Neuroimaging artifacts in haptic functional mag-
netic resonance imaging (Haptic fMRI) experiments have the
potential to induce spurious fMRI activation where there is
none, or to make neural activation measurements appear
correlated across brain regions when they are actually not.
Here, we demonstrate that performing three-dimensional goal-
directed reaching motions while operating Haptic fMRI Inter-
face (HFI) does not create confounding motion artifacts. To test
for artifacts, we simultaneously scanned a subject’s brain with a
customized soft phantom placed a few centimeters away from
the subject’s left motor cortex. The phantom captured task-
related motion and haptic noise, but did not contain associated
neural activation measurements. We quantified the task-related
information present in fMRI measurements taken from the
brain and the phantom by using a linear max-margin classifier
to predict whether raw time series data could differentiate
between motion planning or reaching. fMRI measurements in
the phantom were uninformative (20, 45-73%; chance=50%),
while those in primary motor, visual, and somatosensory cortex
accurately classified task-conditions (20, 90-96%). We also
localized artifacts due to the haptic interface alone by scanning
a stand-alone fBIRN phantom, while an operator performed
haptic tasks outside the scanner’s bore with the interface
at the same location. The stand-alone phantom had lower
temporal noise and had similar mean classification but a tighter
distribution (bootstrap Gaussian fit) than the brain phantom.
Our results suggest that any fMRI measurement artifacts for
Haptic fMRI reaching experiments are dominated by actual
neural responses.

I. INTRODUCTION

Haptic fMRI experiments that involve large three-
dimensional motions present a novel opportunity to study
human motor planning and visuomotor integration, making
it imperative to reject the possibility of obtaining spurious
scientific results due to potential limb motion artifacts.
Such artifacts may arise due to haptic interface electronics,
magnetic field changes induced by limb displacement, or by
systematic perturbations to scanner calibration during motor
tasks. Given that most artifacts have immediate effect, it
is feasible to segregate them from neural activation using
an impulse response model because fMRI measures slow
changes in blood deoxygenation [1], [2]—neural activation
outlasts the transient artifacts. It is, however, a challenge to
determine whether limb motions induce slow task-correlated
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Fig. 1.
planning and executing goal-directed reaches to three distinct spatial loca-
tions (left, L; middle, M; right, R) that spanned the MRI workspace. A
three degree-of-freedom fMRI-compatible haptic interface, HFI, monitored
hand motions. A real-time virtual simulation provided visual feedback on a
screen behind the scanner.

Motor Neuroimaging with Haptic fMRI. The experiment involved

magnetic field fluctuations that mirror actual neural activa-
tion [3], or test if artifacts can substantially disrupt non-
parametric analyses.

Past research has attempted to eliminate motor artifacts
in fTMRI measurements to begin with. Approaches included
avoiding electromagnetic actuation for haptic interfaces [4],
[5]; placing actuators outside the scanner room [6]; using
simple devices and planar motions [7]; or increasing signal-
to-noise by using low fMRI resolutions (voxels>27mm,
sample time>2s) and smoothing data in post-processing [4],
[81, [9]. Such approaches, however, usually lead to haptic
interfaces that perform well only for a limited set of mo-
tor tasks. The alternative, general purpose three degree-of-
freedom haptic interfaces with high-fidelity electromagnetic
actuation [10], [11], are novel devices, and it is an active area
of research to ensure that they reject artifacts in experiments
involving natural [12] and unconstrained three degree-of-
freedom motions [13].

Here, we demonstrate that it is feasible to conduct three
degree-of-freedom reaching tasks (Fig. 1) with Haptic fMRI
while avoiding spurious interpretations induced by artifacts.
To do so, we used a max-margin classifier [14] to test how
informative fMRI measurements were in the brain and in a
phantom that was placed next to it during fMRI acquisition.
Since task-correlated fMRI artifacts must appear in both
brain and phantom, obtaining good classification using mea-
surements from the phantom would imply that artifacts dom-
inate neural activity. Moreover, we did not assume canonical
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Fig. 2. A Motor Task Section. Task instructions were provided on a
monitor visible from inside the scanner bore through a dual-mirror setup.
Panels show different stages of the motor task. Subjects started at rest (blue
highlight), planned a motion to one of three spatial positions (left, middle,
or right) with equal probability, and then either executed a reach to the goal
position or returned to rest. The reach was followed by a hold at the spatial
location, after which subjects returned to the initial rest position. Subjects
executed four such sections for each spatial position (twelve total) in an
fMRI scan run, and executed 8—10 runs in a session (see Appendix for
details).

haemodynamic responses, which are likely to filter artifact
related noise. This increased the likelihood that our analysis
would capture instantaneous motion artifacts. The opposite
held true in our results. fMRI measurements in phantoms
could not predict whether subject were planning motions
or reaching, which validated our Haptic fMRI interface’s
(HFI) performance [11]. We attribute our results to a highly
reliable experiment protocol [13] and low temporal noise
during scanning.

II. EXPERIMENT DESIGN

Our primary objective was to establish Haptic fMRI as an
experimental technique that can enable motor neuroscientists
to non-invasively study the human brain during a variety of
motor tasks. Doing so can complement classical (invasive)
electrophysiology research in animals by validating their
results in humans. In addition, it is our goal to enable
complex tasks that animals find challenging to perform, but
which humans can quickly learn and perform—overtraining
can alter the subject’s neural motor representation. Such
motor neuroscience experiments are feasible using a transpar-
ent fMRI-compatible haptic interface that supports arbitrary
three degree-of-freedom motor tasks involving motion or
force control. Yet, given fMRI’s susceptibility to a variety

of artifacts [2], any such experiments must demonstrate that
they do not confound subsequent analyses.

For this paper, we developed a motor experiment protocol
for human subjects that spans the space of unconstrained,
goal-directed reaching motions possible in an MRI scanner
(Fig. 2). The protocol is a subset of a more general pro-
tocol that we developed [13]. Here, we used fMRI mea-
surements obtained during planning, unconstrained visually-
guided reaching, maintaining a hold at the goal positions, and
returning to a resting state. The protocol’s intuitive design
elicits reliable motions across multiple subjects with less
than ten minutes of training, despite differences in subject
physiology.

For the reaching task, we selected spatially disparate
goal locations (left, y=-0.14m; middle, y=-0.01m; right,
y=0.12m; all, z=0.035m) that span the MRI workspace,
which should induce—if it is possible to do so—artifacts
related to large arm motions and hand-tracking with the
haptic interface. The reaching duration (5s) is sufficient
to sample any magnetic susceptibility artifacts that might
arise in the MRI scanner, given our temporal resolution
(1.57s). As such, it is a suitable testbed to determine how
much information task-correlated noise conveys in fMRI
measurements made while operating HFIL.

III. USING PHANTOMS TO SEGREGATE HAPTIC FMRI
ARTIFACTS FROM NEURAL NOISE

It is challenging to estimate noise levels during Haptic
fMRI experiments by only looking at the brain. This is
because subjects can not solely fixate on tasks at hand,
which implies that fMRI measurements contain much neural
activation that is unrelated to the task. Moreover, there are
often systematic artifacts due to heart- and breathing-rate
fluctuations, which are not a pressing concern because they
can be effectively factorized using general linear model based
denoising techniques [15].

To obtain Haptic fMRI noise estimates that do not include
neural noise, we designed flexible phantoms that we placed
next to a subject’s brain and imaged simultaneously with the
brain’s motor regions (see Appendix—Phantom Construction
for details). Since the phantom and the brain were spatially
only a few centimeters apart, they shared receiver noise
characteristics and were similarly affected by magnetic field
inhomogeneities due to improper shimming, or due to task-
correlated drift induced by limb motion within the MRI bore.
As such, testing whether fMRI measurements in a phantom
could classify whether a subject was doing nothing, planning,
or moving, provided a metric to estimate task-correlated
noise. The phantoms should provide no information and
should thus be unable to classify any experiment condition
from the others.

We also segregated limb motion artifacts from artifacts
induced by our haptic interface’s motors, encoders, and
associated electronics, by scanning a conventional fBIRN
agar phantom while an operator performed the same same
experiment while standing outside the scanner bore. The
operator’s motions were one and a half meters away from

2047



Primary Motor Somatosensory Visual (Calcarine)
Plan Exec
i LMRLMRi ) m ) | . ,
- »mw I we i
=HHE EEE HEEE
~HHE HEEN EEE
rHEN EEEN EEEE

ER EM EL PR PM

Supramarginal Premotor Phantom (w/Brain)
m Il ww il
EEE HEER

Phantom (stand-alone) Phantom (stand-alone
+ scrambled stimuli)

Subject +
Phantom (w/Brain)

0.45 . |

Fig. 3. Classification Accuracy. We classified subject responses to tasks
in various brain regions, using a pairwise max-margin classifier. Confusion
matrices show consistently high pairwise classification accuracies for the
planning and execution tasks in the motor, somatosensory, and visual brain
regions (bootstrap medians shown). A phantom that was simultaneously
imaged with the brain had substantially lower classification accuracies,
indicating that its raw fMRI timeseries was noisy. A stand-alone phantom
exhibited similarly low classification accuracies. Moreover, the stand-alone
phantom’s accuracy did not degrade even after scrambling the stimulus
timing specifications, which indicates that its time series was purely noise.
A subject’s segmented brain slice is shown (bottom-right). The phantom
that was simultaneously imaged with it is marked with an arrow.

the phantom, and thus any magnetic field changes induced
by them promised to have a limited effect on fMRI measure-
ments within the phantom. The haptic interface, in contrast,
was placed at the same location for both the brain phantom
and the stand-alone phantom. As such the noise that it
generated would affect fMRI measurements in a similar
manner. Moreover, this test also provided a comparison
with earlier phantom-based measurements [6], [10], and
helped test whether the homogeneous internal composition
of conventional phantoms biases noise estimates.

IV. CLASSIFICATION WITH BRAIN AND PHANTOM TIME
SERIES

A. Classification Accuracy Across Tasks

We classified blood-oxygen-level dependent (BOLD)
fMRI measurements across brain regions using a maximum-
margin hyperplane (support vector machines; SVM) with
leave-one-out cross-validation. For a given task ¢ of task
type either p or ¢ we classified pairwise using the following
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BIC= -3877.4 -3692.0
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Fig. 4. Classification Accuracy Distribution. Bootstrap distribution of
classification accuracies for different brain regions. Classification accuracies
for the phantoms were close to random chance. The phantom that was
simultaneously imaged with the subject’s brain was within 1.5 standard
deviations. The classification accuracy distributions for individual brain
regions were fit well by a Gaussian, which provided a model to estimate
the mean accuracy and standard deviation (insets). The fitting procedure,
Gaussian mixture regression, achieved highly negative Bayesian Information
Criterion scores (also inset), which indicate goodness of fit. The stand-alone
phantom trials had a significantly tighter distribution, potentially due to their
homogeneous composition.

approach. We selected specific brain and phantom regions
from our segmentation on which to train the SVM. We
bootstrapped [16] 100 voxels from each region. For each
instance of either task p or ¢, from our bootstrapped set of
voxels {v1,...,v100}, We constructed a vector of time-series
responses for each voxel. Each time series was 10s in length,
and began at the start of task . We simply concatenated these
time series into a vector, used these vectors to train a Support
Vector Machine using Sequential Minimal Optimization [14]
in order to find our maximally seperating hyperplane. Each
SVM was trained on approximately 72 such vectors.
Looking at median classification performance across plan-
ning and execution tasks, we found that brain regions consis-
tently outperformed both phantoms (Fig. 3). This indicates
that Haptic fMRI artifacts, if any, do not substantially inter-
fere with neural activation measurements. We also scrambled
the stimulus timing patterns and re-ran the classification on
the stand-alone phantom, with similar results as before. This
indicates that what seems like artifact-related information in
the fMRI time series is actually simply an overfit SVM.

B. Classification Accuracy Across Brain Regions

We further explored the distribution of classification ac-
curacies by looking at bootstrapped histograms for motor,
somatosensory, and visual cortex (Fig. 4). To do so, we
grouped classifications by whether the two tasks being com-
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pared were both plan tasks, both execute tasks, or one plan
tasks and one execute task. We used every classification
accuracy for each comparison within a group across our 1000
bootstraps to optimize a Gaussian Mixture Model using the
Expectation Maximization algorithm. The Gaussian function
it returned was then an estimated probability density function
of classification accuracies for a random sample from within
that region.

Classifiers trained on motor and sensory activity achieved
classification accuracy, over 90% in the median case. When
separating plan and execute tasks, of the 45,000 classifiers
trained on brain regions, every single classifier achieved over
68% accuracy, which was greater than the mean accuracy of
these classifiers trained on the phantom region.

C. Classifying a Phantom’s Responses

The brain phantom had a wide classification distribution,
which mimicked associated brain regions, but had a sub-
stantially lower classification performance (within the range
of chance). The stand-alone phantoms were also close to
random, but, in contrast, had tighter distributions. This was
potentially due to their lower temporal noise. These results
make us confident that our Haptic fMRI experiment avoids
any major confounding artifacts.

Classifiers trained on responses from voxels from the
phantom region performed worse on those trained on brain
regions; some phantom classifiers performing worse than the
50% random guessing baseline, and no single pair classified
better in the median case than on any brain region. In
addition, the Bayesian Information Criterion for a gaussian fit
was substantially worse in the brain phantom than in actual
brain tissue (indicating greater ambient noise levels). This
could be because the MRI scanner shimming process is tuned
to grey matter, and the phantom is not a perfect match in
terms of magnetic susceptibility.

V. TEMPORAL NOISE

A common strategy for estimating how a device’s RF
emmissions interfere with fMRI is to scan a passive dummy
object while operating the device. However, because these
phantoms tend to be homogeneous, error-correcting field
homogenization (shimming) becomes simplified, resulting in
underestimated noise levels. In contrast, scanning human
heads leads to more realistic shim correction, but noise levels
are often overestimated because baseline brain activity and
head motion become noise covariates. By scanning a phan-
tom and a subject’s head simultaneously, we ensured that
our estimate of RF noise in the phantom was a conservative
overestimate (Fig. 5).

VI. CONCLUSION

Efforts to combine haptics with fMRI have made steady
progress in the recent past, resulting in numerous reports of
Haptic fMRI being used for motor neuroimaging studies [4],
[81, [9], [17]. Our results support such efforts by demonstrat-
ing that carefully designed Haptic fMRI experiments elicit
neural activation patterns where informative neural signals
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Fig. 5. Temporal Noise. The subject’s low head motion helped minimize
temporal noise during Haptic fMRI motor experiments. The noise distribu-
tion across cortex is similar to the fMRI scanner baseline, demonstrating
that HFI does not contribute to temporal noise. Noise was measured
across nine 10min runs. The stand-alone phantom had significantly lower
noise levels. The phantom’s homogeneous interior simplifies magnetic field
homogenization, improving the quality of fMRI measurements.
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dominate any spurious noise. The results also demonstrate
that using motor-task classification is a promising technique
to quantify motor-task related information in neural activa-
tion patterns across the brain.

APPENDIX
MRI Protocol

All fMRI scans were conducted at Stanford University’s
Center for Cognitive and Neurobiological Imaging on a GE
Discovery MR750 3 Tesla MRI scanner, with a 32 channel
Nova Medical head coil. The scan protocol was gradient echo
EPI with a 16cm field of view sampled at a 64 x 64 resolution
(2.5%2.5%2.5 mm? voxels), a 1.57s repetition time, a 28ms
echo time, and a 72° flip angle. All scan runs were preceeded
by 2"?-order polynomial shimming and were sandwiched
by spiral fieldmap scans (2.5x2.5x5 mm?® voxels). After
scanning, the fMRI images were slice time corrected, motion
corrected (SPM), spatially undistorted using fieldmaps, and
analyzed to compute temporal noise-to-signal.

Haptics motions

Subject used HFI [11] to execute right handed mo-
tions across the MRI scanner’s workspace. HFI is MRI-
compatible [18] and operates without RF interference in
the scanner room [11]. HFI’s haptic control (and mo-
tion monitoring) rate was 350Hz. HFI’s low position error
(0.025mm [11]) enabled precise hand speed measurements.
Hand velocities were resampled to the fMRI TR using cubic
spline interpolation in order to compare hand velocity with
neural responses.

Human Subject

Subject was a healthy right-handed male with no history
of motor disorders: 20y, 165lb, 6°0”. Informed consent
was obtained in advance on a protocol approved by the
Institutional Review Board (IRB) at Stanford University.

2049



Data Collection

Each data run included twelve task sections, four each for
the three different reach locations. Each section included two
feedback control tasks, so each task type (y- or z-axis) was
repeated four times across each spatial reach location. As
such, for each spatial location, a run produced eight plans,
four reaches, and four feedback control tasks of each type.
Subject executed one practice run inside the MRI scanner,
and then executed nine scan runs. Each run was six hundred
and thirty seconds long.

Head Motion

Subject used a bite-bar with a custom dental dam to mini-
mize head motion. We analyzed head motions by associating
SPM’s motion correction estimates with hand speeds and
velocities measured with HFI. We resampled the hand speeds
and velocities to match motion correction estimates using
cubic spline interpolation.

Segmentation

We performed cortical parcellation on the subject’s brains
according to Freesurfer’s Desikan-Killiany Atlas. The seg-
mentation was based on a high resolution T1 anatomical
scan. We performed a watershed skull trip, and then removed
any remaining skull voxels by hand, before applying the
segmentation software to the T1. We then coregistered this
segmentation to the fMRI inplane using SPM. Using itk-
SNAP, we augmented the co-registered segmentation by
inserting a unique label for the phantom.

Phantom Construction

Phantoms were made using 14.17g (0.50z) xanthan gum
powder and 710mL (3c) distilled water, resulting in a 2%
xanthan gum gel[19]. The xanthan gum powder was added
to the water at room temperature and mixed thoroughly for
thirty minutes using a 250W hand mixer. The mixture was
left to settle for thirty minutes to allow large bubbles to
escape. Two phantoms were made from two nested quart
size, polyethylene plastic bags, each roughly containing 250
mL of the xanthan gel mixture. Each phantom was folded in
half, with the xanthan gum mixture completely contained in
one half, resulting in long, rectangular phantoms.

Phantom Setup

Phantoms were placed on either side of the subject’s head
and held in place using small head support cushions. The
head coil cradled the cushions such that the phantoms were
snug against the subject’s head and the xanthan gum gel was
relatively evenly distributed inside each phantom. Our shim
and functional scans included the left phantom only.
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