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Abstract— Haptics combined with functional magnetic reso-
nance imaging (Haptic fMRI) can non-invasively study how the
human brain coordinates movement during complex manipu-
lation tasks, yet avoiding associated fMRI artifacts remains a
challenge. Here, we demonstrate confound-free neural activa-
tion measurements using Haptic fMRI for an unconstrained
three degree-of-freedom motor task that involves planning,
reaching, and visually guided trajectory tracking. Our haptic
interface tracked subjects’ hand motions, velocities, and accel-
erations (sample-rate, 350Hz), and provided continuous real-
time visual feedback. During fMRI acquisition, we achieved
uniform response latencies (reaching, 0.7–1.1s; tracking, 0.4–
0.65s); minimized hand jitter (<8mm); and ensured reliable
motion trajectories (tracking, <7mm root-mean-square error).
In addition, our protocol decorrelated head motion from
both hand speed (r=-0.03) and acceleration (r=-0.025), which
reliably produced low head motion levels (<0.4mm/s between
scan volumes) and a low fMRI temporal noise-to-signal ratio
(<1%) across thirty-five scan runs. Our results address the
primary outstanding Haptic fMRI confounds: motion induced
low spatial-frequency magnetic field changes, which correlate
neural activation across cortex; unreliable motions and response
latencies, which reduce statistical power; and task-correlated
head motion, which causes spurious fMRI activation. Haptic
fMRI can thus reliably elicit and localize heterogeneous neural
activation for different tasks in motor (movement), pre-motor
(planning), and somatosensory (limb displacement) cortex,
demonstrating that it is feasible to use the technique to study
how the brain achieves three dimensional motor control.

I. INTRODUCTION

Human motor neuroimaging experiments face challenging
requirements: to delineate sensory and motor neural activa-
tion; identify temporal activation sequences across cortex in
a closed sensory-motor loop; and guarantee the absence of
spurious task-correlated fMRI activation. These challenges
are further complicated by fMRI’s indirect neural activation
measurements—magnetic field fluctuations due to neuron-
metabolism induced blood oxygenation changes [1], [2]—
which require subjects to keep their head fixed during and
long after performing a motor task. Subject limb motions,
in addition, induce changes in the magnetic field, whose
task-correlated timecourse can mimic natural neural activa-
tion [3]. Utilizing fMRI’s potential for high-resolution motor
neuroimaging requires noise-free protocols that maximize
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Fig. 1. Motor Neuroimaging with Haptic fMRI. A. Haptic fMRI reliably
activates visual, somatosensory and motor cortex. Individual voxels in motor,
supplementary motor, and somatosensory cortex activate during motion,
while pre-motor cortex voxels predominantly activate during motor planning
and deactivate during motion. Bootstrapped median responses are shown for
exemplar voxels. B. Subjects performed these reaches in an unconstrained
manner across the MRI scanner’s workspace (gray highlight). Our haptic
interface, HFI, tracked hand motion and a monitor (behind the scanner)
provided visual feedback.

subject motion and neural activation reliability and minimize
timing jitter. Ideal experiments must also be complex enough
to elicit heterogeneous neural activation at a fine anatomical
scale.

Combining haptics [4] with fMRI can enable high res-
olution experiments that study the sensory-motor system,
with subjects performing complex motor tasks while haptic
interfaces precisely monitor and perturb motions. To address
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Fig. 2. A Motor Task Section. Subjects received task instructions by
looking at a monitor through a mirror. Panels show the different stages of the
motor task for the left spatial location (tasks were similar for mid, and right.
Subjects started at rest (blue highlight), planned a motion to one of three
spatial locations, and then either executed a reach to the location or remained
at rest. The reach was followed by a hold at the spatial location, and then
two iterations of a feedback control task where subjects tracked a visual
sine wave trajectory by moving their hand along the y- (left-right) or z-axis
(up-down). Each trajectory tracking iteration was selected at random with
equal probability and followed by a static hold. Finally, subjects returned
to the initial rest position. Subjects executed four such sections for each
spatial position (twelve total) in each fMRI scan run, and executed 8–10
runs in a session (see Appendix for details).

motion related artifacts, past haptic neuroimaging experi-
ments used low fMRI resolutions (voxels>27mm3, sample
time>2s) and smoothed data during post-processing [5],
[6], [7], or constrained hand motions to a plane [5], [7],
which limit the technique. Smoothing introduces inter-task
correlations. Constrained motions can differ from natural
motions [8] and can create confounding sensory neural corre-
lates when subjects push against constraints while executing
motor tasks. The primary challenge for Haptic fMRI is thus
to demonstrate confound-free, reliable, and heterogeneous
neural activation for complex unconstrained three degree-of-
freedom motor tasks.

Here, we demonstrate that three degree-of-freedom Hap-
tic fMRI experiments involving motor planning, reaching,
and visually-guided trajectory tracking can reliably elicit
heterogeneous neural activation in sensory and motor cortex.
Our experiment design supports large hand motions across

the MRI scanner’s workspace (>10cm) while minimizing
shoulder displacement, which prevents low spatial-frequency
motion induced magnetic field changes from correlating
neural activation measurements across the brain [9]. As
such, our protocol obtained reliable heterogeneous neural
activation across cortex, even for voxels separated by a
few millimeters (Fig. 1. A). Activation in pre-motor cortex
during planning, and motor cortex during reaching indicates
a temporal activity sequence that matches past research [10].
We calibrated our protocol (Fig. 2) to ensure reliable reaching
motions, static holds, and trajectory tracking, which helped
elicit similar motor statistics for four subjects across thirty-
five scan runs. Finally, we found that our protocol actually
helps suppress head motion during motor tasks and thus
eliminates a major fMRI confound. Our results establish
Haptic fMRI as the leading framework for non-invasive
experiments that study how the human brain coordinates
complex motions.

II. MOTOR EXPERIMENTS WITH HAPTIC FMRI

Our primary goal was to develop an experimental frame-
work that enables neuroscientists to non-invasively study
how the human brain executes complex motor tasks—in par-
ticular, tasks that are challenging or infeasible for monkeys
(or any other animals) to perform and thus inaccessible using
classical electrophysiology techniques. As such, we designed
a protocol with multiple task conditions: motor planning,
unconstrained reaching motions to a goal with no trajectory
specification, precise holding motions at spatially disparate
locations, and fine visually-guided trajectory tracking along
two orthogonal axes (see Fig. 2). Subjects were expected to
maintain the same grasp pose across the reaching trajectory
and move in a reliable manner. We empirically tuned visual
cue timings so subjects did not feel rushed, and did not resort
to jerky motions that induce large head motions (>1mm)
during either feedback control or reaching.

A. Constructing a Motor Protocol with Repeatable Sections

We strived to create an experiment protocol that can be
readily integrated by existing researchers. While completely
randomized tasks help keep subjects engaged, they increase
the complexity of analysis code and are often incompatible
with existing software pipelines [11], [12], [13]. To maximize
our protocol’s compatibility, we used repeatable task sections
with randomized task cues. This allowed us to keep the total
number of repetitions for any task condition constant over
each run, making runs modular and thus replaceable. Fur-
thermore, having sections with the same number of subject
response samples makes it straightforward to cross-validate
or bootstrap runs.

Each task section started at a resting state where subjects
kept their right hand at a comfortable (subject-chosen) point
on their abdomen. The planning cue was followed by a
randomized hold, and led to a reach with a 67% chance,
which kept subjects alert and avoided repetition-induced
microsleep [14]. Randomizing the hold period after the reach
served the same purpose. We avoided a plan stimulus for
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the feedback control task, and instead focused on observing
instantaneous responses to the randomly selected motion
direction. Alert subjects, however, could potentially predict
the task’s upcoming direction near the end of some runs—
if early task sections randomly selected the left-right axis
more often, later sections would select the up-down with a
higher probability to ensure equal trials. Task sections within
a run always ended (and started) in the same rest position,
but subjects could change their rest position between runs.

B. Optimizing Reach Locations

We empirically determined three reach locations that sub-
jects could reliably access while operating HFI (Fig. 3). Our
selected reach locations (left, y=-0.14m; mid, y=-0.01m;
right, y=0.12m; all, z=0.035m) were easily accessible to
subjects despite differences in height and physical stature
(see Appendix for details). Making reach locations accessible
was important to simplify the reaching motion and reduce
fatigue, which helped subjects perform eight to ten runs.
Each location provided enough room to support the feedback
control task’s displacement from the center (±3cm) along the
y- and z-axis.

To determine the time available for reaching to each
location, we asked subjects to execute reaches in a deliberate
and reliable manner, measured the median reach initiation
latency (~1s; see Fig. 4. A), and set the total time to five times
that (5s). The consequent hold allowed reach related neural
activation to stabilize. Randomizing the hold-state’s length
(4–6s) also decorrelated neural activation for reaching and
the upcoming feedback control tasks, which improved our
ability to statistically delineate them using a general linear
model.

C. Optimizing Visual Feedback Control

We set the amplitude of the sine wave trajectory to a
factor of six larger than the steady-state hand jitter during the
hold period (~5mm; see Fig. 4.B). Since the reach locations
were 13cm apart, the 3cm displacement of local trajectory
tracking motions kept them spatially separated from each
other by more than twice their peak displacement (>6cm).
Randomizing the appearance of the y- and z-axis trajectories
decorrelated each axis’ associated neural activation from the
other and also from the reach. In addition, we required
executing two tracking motions (selected at random) during
each motor task section because the reach-related neural
activation could continue for up to 20s [2].

We optimized sine wave time periods to help subjects
reliably track the visual sine wave trajectory with a root-
mean-square error below a pre-decided threshold (<1cm).
We found human response latency to be the limiting factor
that determined how well subjects tracked the sine waves.
Faster sine waves made subjects lag at the start, following
which they overcompensated and rarely recovered. Humans
could track sine waves with time periods of greater than
six seconds, but achieving our root-mean-square error bound
(median, 6–8mm; Fig. 4.C) required the time period to be at
least eight seconds. Human trajectory tracking errors were

Fig. 3. Reliable Motor Trajectories. The four subjects (S1–S4) responded
in a stereotypical manner to the reach, hold, and sine wave trajectory cues.
A. Subjects executed reaches to the left, mid, and right locations without any
spatial bias. Colors indicate medians for individual subjects. Grey indicates
collated raw data. B. Subjects always moved their hand to within a few
millimeters of the desired reach location, which was acceptable. Circles
indicate reach-location medians for individual subjects (colors match A;
black circles are desired positions). C. Sine wave trajectories tracked were
also similar (colors match A). Visual cues seen by subjects during the task
are inset (top-left). Subjects use HFI to control the red ball and track the
white ball’s motion. The controlled (red) ball turned green for position errors
less than 1cm.

similar for both y- and z-axis motions, and were reliable
to the point where the 95%ile median confidence interval
coincides with the plotted motion lines.

III. DECORRELATING HEAD AND HAND MOTIONS

Having optimized motor task execution, our next goal was
to minimize head motion and rotation along any axis to less
than half the voxel width of a very high resolution fMRI
scan (to avoid aliasing).

A. Head Motion Levels that Support High-Resolution fMRI

Using a 1mm3 voxel resolution—achievable with modern
multi-band fMRI [15]—as a benchmark, we set our motion
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Fig. 4. Motor Trajectory Statistics. A. Response latencies for all subjects
(S1–S4) were similar while reaching to the three locations. B. Subject hold
positions exhibited some jitter (~5mm), which was similar across the x-, y-
and z-axis. C. The root-mean-square trajectory tracking error across both
axes was similar (6–8mm) across subjects. Hand motion 95%ile median
confidence intervals for each axis (blue and red curves) demonstrate that
subject motions were reliable (confidence intervals are small). The desired
trajectory is a dashed black line. All box plots show medians, quartiles, and
the inter-quartile range.

and rotation thresholds to <0.5mm and <0.005◦ / volume.
Our efforts to optimize subject motor reliability and comfort
helped achieve these head motion and rotation levels (Fig.
5). Subjects stated that using HFI actually helped them focus
on the task and reduce any motion-related hand jitter, which
consequently might have reduced head motion. Moreover,
HFI’s low and isotropic mechanical impedance (friction and
inertia) [16] potentially acted as a low-pass filter for hand
jitter while moving.

Even our stringent head-motion requirements, however,
can induce artifacts when correlated with motor tasks. As
a consequence, we also decided to test whether head motion
across subjects correlated with hand motion and acceleration
during motor tasks.

Fig. 5. Head Motion During Haptic Tasks. We compared head motions
with hand speed for the four subjects’ thirty-five scan runs that included
four hundred and twenty task sections (see Appendix for details). A. Hand
acceleration showed a weak negative correlation (-0.025) with head motion
and rotation. B. A weak negative correlation was also observed for hand
speed (-0.03). All the fMRI volumes during motion periods exhibited head
motions below our threshold (<0.4mm/sec; <0.005◦/sec). C. Head motion
and rotation along individual axes matched the aggregate head motion trend.
Each dot represents an acquired scan volume.
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Fig. 6. Temporal Noise Across Subjects. Low head motion levels across
subjects helped minimize temporal noise during Haptic fMRI experiments.
The noise distribution for each subject across cortex is similar to the scanner
baseline, which demonstrates that HFI does not contribute to temporal noise.
Noise was measured across 10min runs for each subject (over three different
days).

B. Comparing Head Motion with Hand Speed and Acceler-
ation

Counterintuitive to the notion that motor tasks induce
head motion, we found that head and hand motions had a
weak but clear negative correlation that explained a large
portion of the variance (see Fig. 5. A,B). HFI’s high control
rate (>350Hz [16]) helped accurately estimate both hand
acceleration and speed, which we compared with SPM’s [11]
head motion and rotation estimates. Unfortunately, head
motion estimates inside the MRI scanner are limited to the
fMRI volume repetition time (TR=1.57s). As a consequence,
subjects might move their head and return to their original
position within a scan repetition. We avoided such situations
by eliminating large instantaneous hand accelerations in our
protocol. All motor tasks were much longer than the TR,
and accelerations were smooth. As such, the likelihood of
aliased head motions having affected our results is low.

Head motion and rotation across individual axes were
also uncorrelated (see Fig. 5. C), matching the aggregated
statistics. Finally, all head motions and rotations that ex-
ceeded our threshold were associated with zero hand speed
and acceleration. Such head motion could be attributed
to breathing, swallowing, and movement of the laryngeal
muscles while in the resting state.

We attribute our results to our requirement that subjects
use a bite-bar and be trained to move in a fluid manner (see
Appendix for details). In addition, subjects were healthy, not
claustrophobic, and had been scanned for a different motor
fMRI experiment in the past, all of which helped minimize
head motion.

IV. TEMPORAL NOISE DURING HAPTIC FMRI
Estimating how RF noise generated by a device interferes

with fMRI is complicated since the interference with sen-
sors in the MRI machine’s head coil changes for different

materials. The common strategy, scanning a passive dummy
object while operating the device, underestimates the noise
levels because dummies are homogeneous. This enhances
the ability of error-correcting field homogenization methods
(shimming) that are built into most MRI scanners. Scanning
human brains, in contrast, is realistic, but doing so over-
estimates noise levels because (unobserved and arbitrary)
brain activity and head motion become noise covariates. To
make sure our experiment protocol was robust and potentially
applicable in different scanners, we required an upper bound
on the RF noise in real-world conditions. As such, we tested
RF noise levels directly with human subjects (Fig. 6).

V. CONCLUSIONS

Haptic fMRI overcomes limitations in classical neu-
roimaging experiments, whose unmonitored open-loop motor
tasks [17] can not quantitatively connect neural activation
to motion measurements. In this paper, we demonstrate
Haptic fMRI’s abilities to achieve reliable motions and neural
activation given a complex motor protocol that involves
three dimensional motor control. Our ability to reliably
elicit heterogeneous neural activation across cortex at a
millimeter scale required us to optimize our protocol and
ensure stereotypical subject responses. As an interesting side-
effect, we found that haptic impedance—even at our haptic
interface’s low levels [16]— dissipates energy and can reduce
head motion. Using Haptic fMRI with our protocol promises
to dramatically improve the efficacy of motor neuroimaging
experiments.

While Haptic fMRI has progressed to now support high-
frequency haptic rendering with all three spatial degrees-
of-freedom, many engineering challenges remain. Foremost
is to develop a transparent and isotropic six degree-of-
freedom fMRI-compatible haptic interface that supports a
multi-kilohertz control rate. Such a device’s rotations will
remove present grasp pose constraints on haptic experiments,
and will also reduce effective inertia and friction at the end-
effector (following the macro-mini concept [18]). A second
goal is to demonstrate high fidelity Haptic fMRI at higher
MRI field strengths and during high resolution multiplexed
scanning at sub-millimeter and millisecond timescales. We
expect both to be achieved in the near future.

APPENDIX

MRI Protocol: All fMRI scans were conducted at Stan-
ford University’s Center for Cognitive and Neurobiological
Imaging on a GE Discovery MR750 3 Tesla MRI scanner,
with a 32 channel Nova Medical head coil. The scan protocol
was gradient echo EPI with a 16cm field of view sampled
at a 64×64 resolution (2.5×2.5×2.5 mm3 voxels), a 1.57s
repetition time, a 28ms echo time, and a 72o flip angle. All
scan runs were preceeded by 2nd-order polynomial shimming
and were sandwiched by spiral fieldmap scans (2.5×2.5×5
mm3 voxels). After scanning, the fMRI images were slice
time corrected, motion corrected (SPM), spatially undistorted
using fieldmaps, and analyzed to compute temporal noise-to-
signal.
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fMRI Analysis: Temporal noise-to-signal computations
used the median fMRI response distribution obtained by
regressing out a line from each voxels time-series, computing
the absolute value of the difference between successive time
points, computing the median of these absolute differences,
dividing the result by the mean of the original time-series,
and then multiplying by 100. R2 values were obtained for a
bootstrapped finite impulse response model using GLMde-
noise [13].

Haptics motions: Subjects used HFI [16] to execute
right handed motions across the MRI scanner’s workspace.
HFI is MRI-compatible [19] and operates without RF in-
terference in the scanner room [16]. It has been used for
Haptic fMRI scans at a higher spatial resolution than related
approaches (~ 2x of [5], [20], and [21]). HFI’s haptic control
rate was 350Hz. Hand velocities were resampled to the fMRI
TR using cubic spline interpolation in order to compare hand
velocity with head motion.

Human Subjects: Subjects were healthy right-handed
males with no history of motor disorders: S1, 19y, 170lb,
6’2”; S2, 20y, 150lb, 5’9”; S3, 29y, 185lb, 5’9”; S4, 20y,
165lb, 6’0”. Informed consent was obtained in advance on a
protocol approved by the Institutional Review Board (IRB)
at Stanford University.

Data Collection: Each data run included twelve task
sections, four each for the three different reach locations.
Each section included two feedback control tasks, so each
task type (y- or z-axis) was repeated four times across each
spatial reach location. As such, for each spatial location,
a run produced five to eight plans, four reaches, and four
feedback control tasks of each type. All subjects executed
one practice run inside the MRI scanner, and then executed
at least eight scan runs (S1, 8; S2, 8; S3, 10; S4, 9). Each
run was six hundred and thirty seconds long.

Head Motion Analysis: Subjects used a bite-bar with a
custom dental dam to minimize head motion. We analyzed
head motions by associating SPM’s motion correction esti-
mates with hand accelerations, speeds, and velocities mea-
sured by HFI. HFI’s low position error and high control rate
(0.025mm, >350Hz [16]) enabled precise measurements. We
resampled the hand speeds and velocities to match motion
correction estimates using cubic spline interpolation.
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