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Abstract— In this paper, we show that multiple operations of
the typical pattern recognition chain of an fNIRS-based BCI,
including feature extraction and classification, can be unified
by solving a convex optimization problem. We formulate a
regularized least squares problem that learns a single affine
transformation of raw HbO2 and HbR signals. We show that
this transformation can achieve competitive results in an fNIRS
BCI classification task, as it significantly improves recognition
of different levels of workload over previously published results
on a publicly available n-back data set. Furthermore, we
visualize the learned models and analyze their spatio-temporal
characteristics.

I. INTRODUCTION

Functional Near-Infrared Spectroscopy (fNIRS) is an non-
invasive brain imaging technology that has been shown to
be suitable for many applications in brain-computer inter-
facing and user state detection. However, studies focusing
on single-trial analysis of fNIRS signals are still rare and
common standards for signal processing, feature extraction
and classification are still not established.

The core challenge in brain-computer interfacing is to ex-
tract informative features from the raw brain signal time se-
ries and to learn models to predict mental states or intentions
of the user that can be used for communication and control.
Therefore, BCIs typically follow a pattern recognition ap-
proach, in which multiple operations are sequentially applied
to the raw signal data to derive recognition estimates. In such
a processing chain, data are usually pre-processed to remove
noise and artifacts, subsequently, the signals are temporally
and spatially filtered, informative features are extracted,
selected and combined. Finally, these features are transmitted
to a machine learning component to predict unseen data
based on previously learned models. For fNIRS-based BCIs,
there is no single standard feature extraction method. Com-
monly, studies convert the raw optical measurements into
relative estimates for oxygenated (HbO2) and de-oxygenated
(HbR) hemoglobin concentration using the modified Beer
Lambert Law (MBLL) [1]. Features are calculated from
these chromophore concentrations to represent informative
properties of the hemodynamics. Typically, simple statistical
properties of the time-domain signal amplitudes, such as
mean, variance, slope, kurtosis, skewness or laterality fea-
tures have been calculated as features [2], [3], [4], [5]. Other
studies have also used frequency domain signals and wavelet
decomposition [6], [5]. After feature extraction, machine
learning methods, such as linear or quadratic discriminant
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analysis, support vector machines, or neural networks are
used to model and predict unseen data [7], [6], [8], [9], [5].

Previous work has shown that multiple operations of a BCI
pattern recognition chain can be unified into a single trans-
formation of the raw signal data, which can be formulated
as an optimization problem (e.g. [10], [11], [12]).

This approach is has the benefit that it performs a global
optimization, instead of multiple intermediate steps that may
have different explicit and implicit assumptions. Further-
more, it is usually difficult to find optimal parameters for
multiple individual operation steps, in particular, as they
may depend on each other. The global optimization approach
requires no expert knowledge to identify relevant activity,
whereby it allows to analyze and verify neurophysiological
plausibility (see section III-A).

In the general case it may not be possible to solve
such optimization problems efficiently, however for some
problems the solution can be analytically determined, for
example CSPs can be calculate by solving a generalized
eigenvalue problem [13]. Furthermore, the family of convex
optimization problems can be efficiently solved and there
exist multiple generic numerical solvers, such as CVX [14]
and more specialized solving algorithms, such as DAL [15],
L1 General [16], ADMM [17] and others.

Convex optimization is especially relevant for BCI prob-
lems, since linear processing methods, such as frequency
filters, spatial filters, signal transformations, and classifiers,
are widely used in BCI research and approaches using linear
methods only are among those that have achieved the most
competitive performance in many BCI tasks (see e.g. [18]).
In the context of EEG-based BCIs, Tomioka and Müller
[12] have introduced a regularized discriminative framework
using convex optimization that combines operations such
as feature extraction, feature selection, feature combination,
and classification in a single optimization process. They
used logistic regression as a predictor function and evaluated
different methods for regularization. They evaluated their
approach for a P300 speller and self-paced finger tapping.

In this paper, we present a first approach showing that
a single transformation of raw HbO2 and HbR signals can
be learned by solving a convex optimization problem that
unifies multiple operations of a traditional pattern recog-
nition processing chain. We show that our approach can
achieve competitive results in an fNIRS BCI classifica-
tion task as it significantly improves classification above
previously published results on our publicly available n-
back data set [4]. Additionally, we visualize the learned
models and analyze spatio-temporal characteristics that are
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optimally discriminative under least squares assumptions.
Our approach is especially interesting for BCI problems
where assumptions should be as small as possible, or little
is known about the discriminative effects in the data. To
the best of our knowledge convex optimization for solving
feature extraction, feature selection and classification has not
been applied in fNIRS-based BCIs before.

II. MATERIAL AND METHODS

A. Experiment Description and Data Corpus

We used the publicly available n-back data corpus that
has recently been recorded at the Cognitive Systems Lab
[4]. In this data set subjects performed the n-back task, in
which a sequence of rapidly appearing stimuli is visually
presented. Subjects respond by button press if the current
stimulus is identical to the one that has been shown n stimuli
before. This task requires substantial attention and memory
processing and induces higher workload for increasing n.

The data corpus consist of fNIRS signals from 10 sub-
jects (4 females, 8 right-handed). All subjects performed 10
trial blocks of three n-back tasks n ∈ {1,2,3} in pseudo-
randomized order. During each trial block 22 stimuli with
3±1 targets were visually presented for 2 seconds each.
Relaxation periods were recorded after each trial block to
ensure that hemoglobin levels returned to baseline. The data
corpus, additionally, contains RELAX periods an a break in
the middle of the experiment. Only the 30 n-back trial blocks
were used for the analyzes in this paper. fNIRS signals were
recorded using an Oxymon Mk III (Artinis Medical Systems,
Netherlands). Four transmitter and four receiver optodes
were attached to the forehead with a source-detector distance
of 3.5cm (8 measurement locations). The available data set
contains the concentration changes of HbO2 and HbR for
each channel sampled at 25Hz. A detailed description of the
recording setup, experiment design, subjective evaluations
and behavioral results can be found in [4].

B. Signal Processing

Signal pre-processing was performed similar to [4]: A
moving average filter was applied to attenuate slow signal
trends and low frequency effects (e.g. Mayer Waves), which
subtracted the mean of the 120 seconds before and after every
sample from each HbO2 and HbR sample. Interferences
from heartbeat and higher frequency signal components were
attenuated using an elliptic IIR low-pass filter with cutoff
frequency 0.5Hz (filter order 6). Trial blocks were extracted
from the filtered signals using different window lengths.

C. Optimization Problem

The problem of predicting the target variable from a
small chunk of fNIRS signal data can be formulated as
the following regularized least squares optimization problem
(i.e. regression problem) [19], which estimates an affine
transformation of the data that minimizes the squared dis-
tance to the corresponding target variable:

minimize
w,b

n

∑
i=1

(yi−w> · vec(Xi)+b)2 +λ ‖w‖ , (1)

where n is the number of trials, yi ∈ {−1,1} is the target
variable indicating the ground truth class label of trial i,
vec(Xi) is the vectorized data of trial i, i.e. a vector containing
all HbO2 and HbR samples of all channels and b ∈ R is a
bias term.

The model vector w can be high dimensional, for example,
for 16 data channels and a trial length of 40 seconds sampled
by 25 Hz there are 16000 coefficients in w. Nonetheless,
models can be robustly estimated from small amounts of
data as the second term in (1) controls for model complexity
by regularization. The regularization weight λ that penalizes
the optimization by the norm ‖w‖ can be chosen to avoid
overfitting due to small sample size. Multiple penalty terms
for regularization, in particular sparsity inducing norms, are
used in machine learning literature and may be applied within
this framework. For the evaluations in this paper we applied
`1-norm regularization (aka. lasso), which is well known
for learning sparse models (i.e. many coefficients in w have
values near zero). Predictions ŷ from unseen chunks of fNRIS
data X can be made by ŷ = sgn(w> · vec(X)+b).

The optimization problem (1) has only small constraints
and simultaneously optimizes temporal and spatial weights
of the least squares predictor function in a purely data driven
way, which allows to consider the whole spatiotemporal
structure of the data. For the evaluations in this paper we
used CVX [14] to solve the optimization problem.

D. Baseline Data Processing

For the evaluation of our approach we consider the results
presented in [4] as the baseline performance. In [4] feature
extraction was performed by calculating the slopes of the
HbO2 and HbR signals of each trial, which results in a
16 dimensional feature vector. Subsequently, the 8 most
relevant features were selected using Mutual Information
based feature selection. A Linear Discriminant Analysis
(LDA) was employed for classification.

III. EVALUATION AND RESULTS

To evaluate the approach proposed in this paper, we dis-
criminated different n-back conditions corresponding three
different levels of workload against each other. Comparable
to our previous article [4], we evaluated three binary classi-
fication tasks (1-2, 1-3, 2-3) and one three class task (1-2-3)
for different window lengths.

10-fold cross-validations have been performed to calculate
estimates of classification accuracy. Regularization weights
λ ∈ {i2/100|i = 0,1, . . . ,10} were chosen using a nested 5-
fold cross-validation on the training data of each fold.

Figures 1 and 2 show classification accuracies averaged
over all subjects for different window lengths, for the 2
class and 3 class tasks, respectively. Dashed lines show the
baseline from [4] for comparison. Note that in this analysis,
the number of instances is dependent on the window length,
i.e. with increasing window size fewer instances are available
(see [4] for more details).

The recognition results of the proposed approach are in
general superior to the baseline results, with the exception
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of results for task 1-2 and the result for 25 seconds window
length of 1-3. Pairwise one-sided t-tests indicated that the
improvements in accuracy are significant for the results of
the tasks 1-3, 2-3 and 1-2-3 (p < 0.05, p < 0.0005, p <
0.01, respectively). The performance of the task 1-2 was not
significantly lower than the baseline results (pairwise one-
sided t-test, p > 0.08).
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Fig. 1. Classification accuracies for the tasks 1-2, 1-3, and 2-3 using
different window lengths. Dashed lines indicate baseline results, solid lines
results of the proposed approach.
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Fig. 2. Classification accuracies for the task 1-2-3 using different window
lengths. Dashed lines indicate baseline results, solid lines results of the
proposed approach.

During the optimization of (1), the number of relevant
coefficients in the model w is automatically determined by
regularization. In most cases a non-zero `1-regularization
parameter λ was chosen and the number of active weight
coefficients (i.e. absolute value larger than 10−5) in the
weight vector w was between 11 and 20 (mean 16.5, standard
deviation 2.4). For the models where λ = 0 has been chosen,
more than 99% of the coefficients in w were active weights.
For long windows, classification results of the proposed
approach appear to be more stable than for the baseline,
which can be explained by the regularization that controls
for the complexity of the classifier and avoids overfitting
when only few instances are available.

Instead of the `1-norm regularization penalty that was used
for the results presented above, we also calculated results for
the `2-norm (i.e. equivalent to Frobenius norm; producing
overall small coefficients in w) regularization penalty. Results
were not significantly better than the baseline and perfor-
mance was significantly lower for nearly all window sizes

and tasks than `1-norm results of the proposed approach.

A. Model Analysis

Using optimization problem (1), discriminative models
(w,b) are learned purely data driven from chunks of the raw
HbO2 and HbR time series. Investigating the spatiotemporal
structure of the learned models may give insights on how
predictions are made by the model and indicate how differ-
ences between different levels of workload are represented
in fNIRS data. A direct interpretation of the discriminative
(backward) model weight vectors as learned in (1) can
be misleading, since, e.g. task irrelevant activity can have
significant weights in w in order to filter out such activity.
Haufe et al. [20] recently proposed a method to convert a
linear backward model w into a forward model a (generative
model), which allows interpretation of the weight vector:

a = ΣX ·w ·Σ−1
w>X , (2)

where ΣX is the covariance matrix of the zero mean signal
data X and Σw>X is the covariance matrix of the predicted
data.

Figure 3 shows the forward models for the task 1-3 for
a window length of 40 seconds. The models illustrated in
figure 3 were calculated from the complete 1-back and 3-
back data in the data set. Visual inspection showed that the
models trained in the evaluations (section III) during the 10
folds of the cross-validation are very similar and did not
show systematic differences to those in figure 3. We chose
the task 1-3 as it produced the highest recognition accuracies
and therefore has the most validity to show physiological
effects. Similar conclusions can be drawn from other tasks,
which are not shown here due to page limitations.

Each row of figure 3 shows a plot of the 8 HbO2 (left
column) and a plot of the 8 HbR (right column) channels
over time. Comparing the plots along the columns indicates
strong inter-subject variabilities, which can be attributed to
individual differences in brain activity and measurement
variations, such as small differences in measurement location
due differences in brain anatomy and optode locations.

The forward models of this data set are subject to noise,
but temporal and laterality effects can be recognized. For
multiple subjects, the models of most channels show negative
activations (blue) in the first half and positive activations
(red) in the second half of the HbO2 trials, or positive
activations (red) in the first half and negative activations
(blue) in the second half of the HbR trials. Such temporal
effects are for example pronounced for subjects 2, 4, 6 in
the HbO2 channels and for subjects 5, 6, 7, 10 in HbR
channels. The effect can be interpreted in the light of a
typical shape of a hemodynamic response that increases for
HbO2 and decrease for HbR signals around 10 seconds after
the stimulus onset, whereby the effect is most pronounced in
the 3-back condition (c.f. Figure 4 in [4] for grand averages
of the task conditions).

Differences between the activations of channels 1-4 (right
hemisphere) and channels 5-8 (left hemisphere) indicate
laterality effects. Figure 3 shows that laterality effects are
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Fig. 3. Visualization of the forward models for the condition 1-back versus 3-back (1-3), 40 seconds window length.

more subject to temporal variability, but can be observed, for
example, for subject 9 in HbO2 channels and for subjects 7
in HbO2 and HbR channels.

IV. CONCLUSIONS

In this paper we have analyzed fNIRS signals recoded
during 1, 2, and 3-back task conditions using least-squares
optimal discriminative models learned by solving convex
optimization problems. This approach has a straight forward
problem formulation, and can efficiently be solved using
numerical solvers. It is elegant as it unifies multiple oper-
ations in a typical BCI pattern recognition chain, including
feature extraction, spatiotemporal filtering and classification.
We have shown that the proposed approach significantly
and consistently improved classification performance for the
tasks 1-3, 2-3, and 1-2-3. The learned models were analyzed
using interpretable forward models and spatial and tempo-
ral effects were discussed. We believe that the techniques
described in this paper are helpful for many problems in
fNIRS-based brain computer interfacing and beyond.
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