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Abstract—This study presents single-trial classification 
performance on high density Near Infrared Spectroscopy 
(NIRS) data collected from the prefrontal cortex of 11 healthy 
subjects while performing working memory tasks and idle 
condition. The NIRS data collected comprised a total of 40 
trials of n-back tasks for 2 difficulty levels: n=1 for easy and 
n=3 for hard. The single-trial classification was performed on 
features extracted using common average reference spatial 
filtering and single-trial baseline reference. The single-trial 
classification was performed using 5×5-fold cross-validations 
on the NIRS data collected by using mutual information-based 
feature selection and the support vector machine classifier. The 
results yielded average accuracies of 72.7%, 68.0% and 84.0% 
in classifying hard versus easy tasks, easy versus idle tasks and 
hard versus idle tasks respectively. Hence the results 
demonstrated a potential feasibility of using high density NIRS-
based BCI for assessing working memory load. 
 

I. INTRODUCTION 

Working memory refers to the limited capacity system 
that is temporarily maintained in our brain to store 
information in order to support our thought processes by 
providing an interface between perception, long-term 
memory and action [1]. Working memory is vital in a wide 
range of cognitive functions, and its impairment is observed 
in a wide range of psychiatric or neurological disorders, 
making it clinically important [2]. There were evidences in 
humans and mice that working memory training improves 
general cognitive ability [3]. There were also evidence that 
training working memory impacted the structural 
connectivity of the brain, thus underlaid improvement of 
working memory capacity, cognitive functions, and altered 
functional activity following working memory training [4]. 

In studies of Near Infrared Spectroscopy (NIRS)-based 
Brain-Computer Interface (BCI), the detection of left and 
right motor imagery from hemodynamic responses was first 
demonstrated in [5], and later in [6], [7]. Besides the use of 
NIRS-based BCI for motor imagery, studies have also 
shown that other cognitive tasks, such as performing mental 
arithmetic, generally resulted in an increase of 
oxyhemoglobin associated with a decrease of 
deoxyhemoglobin in the prefrontal cortex [8]. The feasibility 
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of using a low density 16 channels NIRS-based BCI for 
assessing level of numerical cognition was demonstrated in 
[9], [10]. Recently, a multi-modal NIRS and fMRI study had 
shown that NIRS can be used to measure hemodynamic 
signal from prefrontal cortex activation during working 
memory task [11].  

Single-trial analysis of NIRS data for mental arithmetic 
tasks were presented in [12], [13], and single-trial NIRS data 
for working memory was recently presented in [14]. This 
study presents a single-trial analysis on the classification 
performance of high density NIRS data collected from the 
prefrontal cortex of 11 healthy subjects in order to further 
investigate the feasibility of using NIRS-based BCI for 
assessing working memory load.  

II. METHOD 

This section describes the experiment that collected high 
density NIRS data during working memory tasks, the 
computation of the hemodynamic responses from the NIRS 
data collected, and the feature extraction and selection 
method used in the study. 

A. NIRS data collection 

The data was collected from 11 healthy subjects recruited 
from staffs and students of the Brain-Computer Interface 
laboratory in the Institute for Infocomm Research, A*STAR. 
Ethics approval and informed consent were obtained.  

The NIRS data was collected using the DYnamic Near-
Infrared Optical Tomography (DYNOT) Imaging System 
(NIRx Medizintechnik GmbH, Berlin, Germany) with 
wavelengths 760 and 830 nm, sampling rate 1.81 Hz, using 
32 co-located optodes that served as source and also detector 
on the prefrontal cortex of the subject’s head as shown in 
Figure 1(a). The optodes were fixed on the prefrontal cortex 
using an open scaffolding structure with individually spring-
loaded fibers to ensure stable optical contact. The setup 
measured 32 channels from 32 detectors for each source for 
each wavelength, and this dense fiber grid setup yielded a 
total of 1024 channels for each wavelength. However, only 
372 channels for each wavelength with source and detector 
distances between 1.5 to 3.5 cm measured using the Xensor 
digitizer for each wavelength were used in this study. 

During the NIRS data collection, the subjects were seated 
in a comfortable chair in a room with normal lighting. They 
were instructed to relax, minimize movement, and to 
respond as quickly and as correctly as possible by pressing a 
key on the keyboard. 
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(a) (b) 

Figure 1. (a) NIRS data are collected using 32 co-located source and detectors over the prefrontal cortex. (b) NIRS data collection setup whereby the n-back 
working memory training task is presented to the subject on the screen and the answer is captured using a keyboard. 

 
The subjects underwent a total of 40 trials of n-back 

working memory training tasks that were evenly distributed 
into 2 difficulty levels of easy and hard. The subject was 
instructed to monitor a series of stimuli and to respond 
whenever a stimulus was the same as the nth previously 
presented stimuli, where n was set to 1 for the easy task and 
3 for the hard task. This n-back working memory task 
requires on-line monitoring, updating, and manipulation of 
remembered information and is therefore assumed to place 
great demands on a number of key processes within working 
memory [15]. 

At the start of each trial, the subject was instructed on the 
screen to respond to 1 or 3-back task for 5 s. For each trial, a 
stimuli list of a total of 20 stimuli was constructed from 21 
consonant uppercase alphabets. Each trial comprised of 4 
situations whereby the current stimuli corresponded to the 
previous or 3rd previous stimulus for the 1-back or 3-back 
task respectively. Each stimulus in the stimuli list was 
presented for 2 s, and each trial lasted 5 + 20×2 = 45 s. A 
period of 20 s rest condition was given between each trial. 
The response from the subject was evaluated during each 
trial, and correct or wrong responses were tracked and 
displayed on the screen. The 40 trials of data from each 
subject were collected in two separate recordings that 
comprised 20 trials each, and each run lasted approximately 
22 minutes with an inter-run break of 5 minutes.NIRS data 
processing 

Let the optical density for wavelength  from a channel c 

be ODc
 . The normalized change in optical density ODc


  

was computed by dividing each time sample with the mean 
of the optical signal acquired for the entire session. Next, 

ODc


  was low-pass filtered using Chebychev type II filter 
with a cut-off frequency of 0.14 Hz and pass-band 
attenuation of 0.02 dB. The low cut-off frequency was 

chosen relative to the low sampling rate. Linear-detrending 
was then performed to remove the drift (low frequency bias) 
in the NIRS data due to subject movement, blood pressure 
variation, or instrumental instability [16]. After filtering and 
detrending, unity was added to bring the mean of the optical 
density to unity instead of zero. The optical density changes 

were represented as ODc
  after these preprocessing steps. 

C. Computing hemodynamic responses 

The optical density changes of the two wavelength 

( 1ODc
 , 2ODc

 ) were converted to changes in HbO2 

([HbO2]c) and HB ([Hb]c) by solving [6] 
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 is the wavelength-dependent extinction coefficient, L is 
the path length from source to detector, and DPF is the 
differential path-length. In this study, the values of  were 
obtained from [17], and DPF = 6.3 and 6.0 were used for λ 
= 760 and 830 nm respectively. 

D. Feature extraction method 

NIRS signals are often dominated by noise and artifacts 
of both physical and physiological origin, such as subject’s 
movement, heartbeat, respiration effects and other trends 
[18]. Therefore, the Common Average Reference (CAR) 
Spatial Filtering [19] was performed on [HBO2]c to further 
reduce the noise and artifacts that were common in all the
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TABLE I EXPERIMENTAL RESULTS ON THE 5×5-FOLD CROSS-VALIDATIONS ACCURACIES IN CLASSIFYING THE SINGLE-TRIAL HIGH DENSITY NIRS DATA ON 

EASY VERSUS HARD (EVH), EASY VERSUS IDLE (EVI), AND HARD VERSUS IDLE (HVI) TASKS USING THE MIBIF TO SELECT 8, 10, AND 12 OUT OF 686 

EXTRACTED FEATURES AND USING THE SUPPORT VECTOR MACHINE (SVM) CLASSIFIER.  

Overall
Subjects 1-back 3-back Responses EvH EvI HvI EvH EvI HvI EvH EvI HvI

CC 77 60 85.6 67.5 59.0 86.0 72.0 61.5 88.5 70.5 64.5 87.5
J 77 70 91.9 70.0 86.5 92.5 73.0 88.5 94.0 67.5 89.0 93.5

KK 78 58 85.0 72.5 88.0 90.0 73.5 89.0 90.0 71.5 90.0 91.5
DL 75 77 95.0 84.0 72.0 82.5 81.5 71.5 82.5 84.0 71.5 81.5
HD 76 60 85.0 78.5 64.0 88.0 76.0 61.5 89.0 73.0 63.5 90.5
A 78 65 89.4 80.5 78.0 87.0 79.5 79.0 86.5 80.0 77.5 87.5
BJ 80 79 99.4 71.5 55.0 87.0 69.0 54.0 86.0 69.5 54.0 87.0
JH 74 68 88.8 58.0 46.0 64.5 57.5 44.5 67.0 56.0 50.5 69.0
DO 80 79 99.4 66.5 56.0 81.5 67.5 51.0 81.5 70.0 48.0 81.5
DK 78 66 90.0 71.5 61.0 77.5 69.5 62.5 79.5 73.5 64.0 78.5
RK 80 71 94.4 79.5 83.0 90.0 82.5 83.0 88.5 80.5 81.5 90.0

Average 77.5 68.5 91.25 72.7 68.0 84.2 72.9 67.8 84.8 72.4 68.5 85.3

8 Features 10 Features 12 FeaturesCorrect Responses

 
 

channels using 
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and CAR was similarly performed on [HB]c. 
Subsequently, Single-trial Baseline Reference (SBR) [19] 

was performed on [HBO2]c to reduce noise and artifacts in 
each specific channel using 
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and SBR on [HB]c was similarly performed.  
The SBR method first computes the baseline reference for 

a single trial NIRS data from the average of the first half of 
the time segment T, then subtracts this baseline reference 
from the next half of the time segment for [HBO2]c and 
[HB]c  respectively. The extracted feature vector for the ith 
trial is then formed whereby [HBO2]c and [HB]c are 
computed from equation (4). 

E. Feature selection and classification 

Feature selection was performed to select discriminative 
features using the Mutual Information-based Best Individual 
Feature (MIBIF) algorithm [20] on the training data. The 
MIBIF algorithm required the specification of k, the number 
of features to select. In this study, the MIBIF algorithm was 
used to select a range of k=8, 10, and 12 features, and the 
Support Vector Machine (SVM) was used to classify the 
selected features. This values of k were chosen to investigate 
if the number of features has an effect on the classification 
accuracies. 

III. EXPERIMENTAL RESULTS 

The performance of single-trial classification on the NIRS 
data collected from the 11 subjects was evaluated by 
performing 5×5-fold cross-validations on the easy versus 
hard (EvH) tasks, easy versus idle (EvI) tasks, and hard 

versus idle (HvI) tasks. The fixed time segment T in 
equation (4) for classifying the EvH tasks was set to 38 s 
and for the EvI and HvI was set to 18 s due to the 20 s of 
rest given between each trial. Table I shows the number of 
correct subject responses from each subject for the easy 1-
back and hard 3-back tasks, the overall accuracies from each 
subject responses, and the classification accuracies obtained 
on the features extracted using the method described in 
section II.D and the MIBIF algorithm to select 8, 10, and 12 
features of the EvH, EvI, and HvI tasks. 

The total number of subject responses for the 1-back and 
3-back tasks were 80 each, since 20 trials were collected for 
each tasks, and each trial comprised of 4 responses. The 
overall accuracies from each subject responses were 
computed based on these correct responses over the total 
number of responses. The results in Table I showed that the 
average number of correct responses across subjects was 
higher for the 1-back task compared to the 3-back task. This 
showed that the 3-back task is in general more difficult and 
thus more demanding compared to the 1-back task. 

The results in Table I showed that averaged classification 
accuracies of selecting 8 features for the EvH, EvI and HvI 
tasks yielded an accuracy of 72.8%, 68.0% and 84.2% 
respectively across the 11 subjects. The results from 
selecting 8 features showed a larger variation in the 
classification accuracies across the subjects for the EvI tasks 
(±14.2) compared to the EvH (±7.5) and HvI tasks (±7.8). 
Given that the 95% confidence estimate of the classification 
accuracy for 40 trials at chance level is in the range of 
27.5% to 68.0% using the inverse of binomial cumulative 
distribution, the single-trial NIRS classification results 
showed that the 7 out of 11 subjects performed at chance 
level for the EvI tasks, but only 3 and 1 subjects performed 
at chance level for the EvH and HvI tasks respectively 

Most subjects with good working memory are able handle 
the 1-back task with ease. The 3-back task by nature 
demands a higher working memory load since the subjects 
have to continually adjust the information in their working 
memory to incorporate the most recent stimulus while 
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simultaneously rejecting or ignoring more temporally distant 
stimuli [12]. As such, it is postulated that the higher 
variation in the EvI tasks may be due to less discriminable 
single-trial NIRS data, which resulted in a larger number of 
subjects that yielded single-trial classification performance 
at chance level. In contrast, the results on a lower number of 
correct responses for the 3-back task showed that more 
subjects found the task more demanding. The results also 
showed that there was a lower variation in the classification 
accuracies across the subjects for the HvI tasks compared to 
the EvI tasks. As such, it is postulated that the lower 
variation in the HvI tasks may be due to a more 
discriminable single-trial NIRS data compared to the EvI 
tasks, which resulted in a smaller number of subjects that 
yielded single-trial classification performance at chance 
level for the HvI tasks. 

The results in Table I also showed the averaged 
classification accuracy across the EvH, EvI and HvI tasks 
for selecting 8, 10, 12 features were 75.0, 75.2 and 75.4 
respectively. Hence the results showed that increasing the 
number of features selected slightly improved upon the 
overall classification accuracies, by the improvements are 
not statistically significant (p=0.645 and 0.414 from paired 
student’s t-test respectively).  

IV. CONCLUSION 

This study investigated single-trial classification 
performance of high density NIRS data collected from the 
prefrontal cortex of 11 healthy subjects while performing 1-
back, 3-back tasks and the idle condition. The classification 
performance was evaluated using 5×5-fold cross-validations 
on the easy versus hard (EvH) tasks, easy versus idle (EvI) 
tasks, and hard versus idle (HvI) tasks. Since different time 
segments were chosen for the EvH compared to the EvI and 
HvI tasks, the performance of multi-class classification was 
not performed. 

The results showed higher classification accuracy for HvI 
compared to EvI tasks, postulated to a more discriminable 
NIRS signal as a result of increased working memory load 
in performing the harder 3-back task. In addition, the results 
showed that the average accuracy across the 11 subjects in 
classifying the EvH tasks on features extracted using the 
Common Average Reference (CAR) Spatial Filtering and 
Single-trial Baseline Reference (SBR) method [19] was 
around 72%. The result yielded accuracy similar to single-
trial classification of NIRS data for numerical cognition 
[19], albeit slightly lower compared to the results of 78% on 
single-trial classification of NIRS data for 3 levels of mental 
workload from 10 subjects in [14]. Hence the results further 
demonstrated the feasibility of using NIRS-based BCI for 
assessing working memory load. 
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