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Abstract— Functional near infrared spectroscopy (fNIRS) is
an emerging technique for the in-vivo assessment of functional
activity of the cerebral cortex as well as in the field of brain-
computer-interface (BCI) research. A common challenge for the
utilization of fNIRS for BCIs is a stable and reliable single trial
classification of the recorded spatio-temporal hemodynamic
patterns. Many different classification methods are available,
but up to now, not more than two different classifiers were
evaluated and compared on one data set. In this work, we
overcome this issue by comparing five different classification
methods on mental arithmetic fNIRS data: linear discriminant
analysis (LDA), quadratic discriminant analysis (QDA), support
vector machines (SVM), analytic shrinkage regularized LDA
(sLDA), and analytic shrinkage regularized QDA (sQDA).
Depending on the used method and feature type (oxy-Hb or
deoxy-Hb), achieved classification results vary between 56.1 %
(deoxy-Hb/QDA) and 86.6 % (oxy-Hb/SVM). We demonstrated
that regularized classifiers perform significantly better than
non-regularized ones. Considering simplicity and computational
effort, we recommend the use of sLDA for fNIRS-based BCIs.

I. INTRODUCTION

A few years ago, functional near infrared spectroscopy
(fNIRS) was proposed as a novel approach in the field
of brain-computer communication. Coyle et al. [6] were
the first to investigate the suitability of fNIRS for brain-
computer interfaces (BCIs), the so-called optical BCI (oBCI).
Since that time, a growing number of research groups have
investigated different concepts using fNIRS alternatively to,
or in combination with, traditional EEG-based BCIs (for an
overview see [1]). However, there is still ongoing research
needed to investigate the full potential of fNIRS in this
field. A common challenge for BCIs is a stable and reliable
single trial classification, especially for cognitive (mental)
tasks. This challenge applies in particular to oBCIs, because
typically only little data is available. Therefore, finding a
suitable classifier is mandatory.

Previous studies investigated, among others, the use of
linear discriminant analysis (LDA), c. f. [3], [15], [17], [18],
quadratic discriminant analysis (QDA), c. f. [15], or support
vector machines (SVM), c. f. [16], [18]. However, to the best
of our knowledge, up to now not more than two classifiers
were evaluated on one data set to investigate their suitability
for fNIRS signals.

In the present oBCI simulation, we overcome this issue by
evaluating and comparing these previously used classifiers

*The authors’ research has been supported by the ”Land Steiermark”
research project (A3-22.N-13/2009-8) and FP7 EU research projects Back-
Home (No.288566) and BNCI Horizon 2020 (No.609593).

1G. Bauernfeind, D. Steyrl, C. Brunner and G. R. Müller-Putz are with
Institute for Knowledge Discovery, BCI Lab, Graz University of Technology,
8010 Graz, Austria david.steyrl at tugraz.at

along with their regularized variants: LDA, QDA, SVM,
shrinkage regularized LDA (sLDA), and shrinkage regular-
ized QDA (sQDA). Furthermore, these methods are com-
pared to the approach of using antagonistic hemodynamic
response patterns for single trial classification, as performed
by our group in [3].

II. METHODS

A. Participants, Experimental Paradigm and Data Recording

For the present investigations, we used the data of eight
participants (three male, five female, mean age 26 years,
standard deviation SD 2.8 years) which showed antagonistic
hemodynamic response patterns (for details see [14]) during
the performance of a mental arithmetic (MA) task. These
data sets were already used in a first investigation on single
trial classification [3] of these responses. Briefly summarized,
the participants were instructed to perform cue-guided men-
tal calculations. During this task, they had to sequentially
subtract a one-digit number from a two-digit number (e.g.,
87 − 4 = 83, 83 − 4 = 79, . . . ; the initial subtraction was
presented visually on a monitor) as quickly as possible for
12 s, followed by 28 s of rest. Participants performed 3 or 4
runs with six trials per class and run, resulting in 18 or 24
trials per class, respectively.

For data recording, a continuous-wave fNIRS system
(ETG-4000, Hitachi Medical Co., Japan) with a sampling
rate of 10 Hz was used. The multi-channel system, consisting
of 16 photo-detectors and 17 light emitters (3 × 11 grid,
52 channels), measured the change of oxy-Hb concentration
and deoxy-Hb concentration in millimolar times millimeter
(mM ·mm). The distance between source and detector was
3 cm. The lowest line of the grid was arranged along the
FP1–FP2 line (international EEG 10-20 system) covering
the whole frontal lobe. For further details on data recording,
experimental paradigm and channel placement see [3], [14].

B. Preprocessing, Feature Extraction and Evaluation

After removing baseline drifts with a 0.01 Hz high pass
filter, the task-related concentration changes referred to a 10 s
baseline interval prior to the task were calculated (for further
details see [2], [14]). Concentration changes (averaged over
1 s) of the hemodynamic response at seconds 10, 11, 12,
13, and 14 (±2 s around the end of the MA task, to cover
also delayed task-related parts of the response) were labeled
as class MA. Changes at seconds 26, 27, 28, 29, and 30
(in between two MA tasks) were labeled as class REST.
Features consisted of oxy-Hb or deoxy-Hb concentration
values of all channels at the described fixed times. Oxy-Hb
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and deoxy-Hb features were used separately since combining
the features would have worsen the problem of low trials-to-
features ratio. For each participant, independent classifiers
were calculated using training sets, and subsequent offline
BCI simulations were performed on separate evaluation sets.
These consisted of the last 8 trials per class of the recording.

C. Linear Discriminant Analysis and Analytic Shrinkage
Regularization

The idea behind linear discriminant analysis (LDA) is to
use hyperplanes for separating classes [7]. In the case of a
binary decision, the classification of a given sample x ∈ RN

is performed by

sign(wTx+ b), (1)

where b denotes the bias (offset of the hyperplane) and w the
projection vector. The projection vector can be calculated by

w = Σ̂−1
c (µ̂1 − µ̂2), (2)

where µ̂i denotes the vector of estimated means per feature
dimension of class i and Σ̂c is the estimated common covari-
ance matrix (the average of the individual class covariance
matrices). The bias is given by

b = −wT µ̂, (3)

where µ̂ denotes the vector of estimated means per feature di-
mension over all classes. Although this classification method
is very simple, LDA provides the optimal classification if the
following assumptions are satisfied [7]:

• True class labels are known
• Features are normally distributed and parameters of the

distribution are known
• Features covariance matrices are equal for all classes

Hence, the classification performance of an LDA classifier
crucially depends on accurate estimates of the class means
and the common covariance matrix. If enough data are
available, an accurate estimate is not a problem. However,
in cases where insufficient data are available, conventional
estimation of the covariance matrix fails. In those cases, the
covariance matrix is ill conditioned. One can improve the
conditioning of the covariance matrix by regularization.

An efficient regularization method is analytic shrinkage
regularization. Analytic shrinkage regularization compen-
sates for systematic errors due to a low amount of data.
The systematic error affects the eigenvalue calculation of the
covariance matrix: large eigenvalues of the covariance matrix
are overestimated, and small eigenvalues are underestimated.
One can counteract these systematic errors by decreasing
large eigenvalues and increasing small eigenvalues. Analytic
shrinkage regularization modifies the estimated covariance
matrix by

Σ̃(γ) = (1− γ)Σ̂ + γ
trace Σ̂

d
I, (4)

where γ is a tuning parameter ranging from 0 to 1, Σ̂
is the original estimated covariance matrix, d denotes the

dimensionality of the feature space and I denotes the identity
matrix. This kind of regularization shrinks the estimated
covariance matrix towards the identity matrix.

Essentially, the tuning parameter γ must be selected appro-
priately; γ = 0 corresponds to the original covariance matrix
estimation, while γ = 1 discards the original covariance
matrix. An optimal value of γ compensates for the systematic
error and hence improves the classification accuracy. There
exists an analytic method for optimizing γ, introduced by
[11]. This so-called analytic shrinkage regularized LDA
(sLDA) is computationally very efficient and outperformed
ordinary LDA significantly at low trial-to-feature ratios [4].
In our work, we used the analytic shrinkage calculation as
implemented in BCILAB [10].

D. Quadratic Discriminant Analysis and Analytic Shrinkage
Regularization

Quadratic discriminant analysis (QDA) can be seen as
an extension of the LDA classifier [7]. QDA considers
quadratic terms of features. In the binary decision case, the
classification is given by

sign(xTAx+ wTx+ b), (5)

where b denotes the bias term, w the linear projection vector,
and A the projection matrix of the quadratic terms. The
quadratic terms allow for non-linear decision boundaries.
Non-linear decision boundaries are a necessity for optimal
classification when the class features are normally dis-
tributed, but have different covariance matrices. QDA is the
optimal classification strategy if the following assumptions
are satisfied [7]:

• True class labels are known
• Features are normally distributed and parameters of the

distribution are known
Training of QDA is similar to LDA, except that separate
covariance matrices must be estimated for each class. When
the feature space is large, this can dramatically increase
the amount of parameters to fit [7]. A high amount of
parameters to fit intensifies the problem of estimating well
conditioned covariance matrices. Therefore, regularization of
the covariance matrices is highly recommended. One can
use the same analytic solution for estimating a shrinkage
regularization parameter compensating for a low amount of
training data as used for LDA.

E. Linear Support Vector Machines

Like LDA, linear support vector machines (SVMs) use
hyperplanes for separating classes. However, SVMs rely on
a different method for finding the separating hyperplanes,
which is not based on the statistical properties of the training
data. Instead, it tries to find a decision boundary with
maximum margin between classes [7]. The classification rule
in the binary case is again a linear function in x:

sign(wTx+ b), (6)

where w is the projection vector and b is the bias. To
calculate w and b, the margin is defined as the distance
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between the nearest data points of either class measured
perpendicular to the hyperplane. Intuitively, one wants to
maximize the margin to maximize the ”safety distance”
between the classes. It can be shown that maximizing the
margin is mathematically equivalent to minimizing ‖w‖2 in
a rescaled data space where mini |wT xi + b| = 1 holds.
This formulation runs into problems if there is no perfect
separating hyperplane. For dealing with overlapping classes,
so-called slack variables ζi are introduced. ζi measures the
amount of constraint violation per data point i. Including
the slack variable into the formalism described above leads
to the typical SVM notation:

min
w,b
‖w‖2 + C

N∑
i=1

ζi (7)

subject to: mini |wT xi + b| = 1− ζi

C is a tuning parameter that defines the costs of constraint
violations and can be determined by cross-validation. It
controls the weighting between classification error (

∑N
i=1 ζi)

and model complexity (‖w‖2), i. e. a small C leads to
a simple model, whereas a large C leads to a complex
model. SVMs perform an implicit regularization, because
the objective is to minimize the classification error and the
model complexity simultaneously. Hence, simple models are
preferred over complex models.

We performed a grid search to determine the optimal cost
parameter by calculating 10-times 10-fold cross-validations
on the training data. Here, we varied the values of C from
2−5 to 215 by increasing the exponent in steps of 2. We used
a modified SVM implementation from BCILAB [10].

F. Antagonistic Activation Patterns Classification

In [3] we used antagonistic hemodynamic response pat-
terns as features for classification with an LDA. In more
detail, features consisted of combinations of oxy-Hb or
deoxy-Hb concentration values, selected from three regions
of interest (ROI): medial area (ROI1) of the anterior pre-
frontal cortex, left (ROI2) and right (ROI3) dorsolateral
prefrontal cortex. For each participant, independent LDAs
were trained and validated (leave-one-out cross validation)
with individual antagonistic oxy-Hb responses. All possible
feature combinations were evaluated to identify the best
performing antagonistic feature combination (ROI1, ROI2 or
ROI1, ROI3). The same procedure was applied also to the
antagonistic deoxy-Hb signals (for further details see [3]).
By using the best antagonistic oxy-Hb features, a mean
classification accuracy of 79.7 % (SD 8.0) was computed.
Antagonistic deoxy-Hb features performed worse, reaching
a mean classification accuracy of 66.4 % (SD 12.5).

G. Statistical Analysis

We used analysis of variance (ANOVA) to assess sta-
tistical differences between the six classification methods
and the two feature types. More specifically, we ran a two-
way repeated measures ANOVA with the factors “method”
(six levels: Antagonistic-LDA, LDA, QDA, sLDA, sQDA,

SVM) and “feature” (two levels: oxy-Hb and deoxy-Hb). If
Mauchly’s test indicated significant violations of the spheric-
ity assumption, we adjusted the degrees of freedom using
Greenhouse-Geisser correction. For significant ANOVA re-
sults, we performed paired t-tests as post-hoc tests with
false discovery rate (FDR) correction to account for multiple
comparisons.

III. RESULTS

The results of the BCI simulation and the results of the
antagonistic features classification are summarized in Table I.

TABLE I
MEAN AND STANDARD DEVIATION (SD) OF CLASSIFICATION

ACCURACIES (IN %) FOR OXY-HB AND DEOXY-HB FEATURES.
ANTAGONISTIC-LDA DENOTES THE COMPARISON ACCURACIES,

PUBLISHED IN [3]. BEST CLASSIFICATION METHODS PER FEATURE ARE

HIGHLIGHTED.

oxy-Hb deoxy-Hb
Classifier Mean SD Mean SD
Antagonistic-LDA 79.7 8.0 66.4 12.5
LDA 69.2 16.1 76.1 13.8
sLDA 86.3 10.1 77.7 11.3
QDA 62.0 9.5 56.1 6.7
sQDA 82.7 12.7 67.0 17.2
SVM 86.6 7.3 79.4 14.3

The ANOVA revealed significant main effects of “method”
(F (1.9, 13.5) = 14.34, p < 0.01, η2G = 0.33) and “feature”
(F (1, 7) = 6.99, p = 0.03, η2G = 0.09) and a significant
interaction between these two factors (F (2.2, 15.2) = 4.76,
p < 0.01, η2G = 0.09). Pairwise FDR corrected t-tests
yielded the following significant differences: both SVM and
sLDA were significantly better than sQDA, QDA, LDA,
and Antagonistic-LDA; and QDA was significantly worse
than Antagonistic-LDA, LDA, and sQDA. The results of the
ANOVA are shown in Figure 1.

60

70

80

90

Antagonistic
LDA

LDA QDA SVM sLDA sQDA

A
cc

ur
ac

y 
(%

)

Feature
deoxy−Hb
oxy−Hb

Fig. 1. Mean accuracies and 95 % confidence intervals for all methods and
features.
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IV. DISCUSSION AND CONCLUSION

Our findings show that the choice of an appropriate
features/classifier combination is crucial for single trial clas-
sification of fNIRS-based BCI MA data. The results vary
significantly and are between 56.1 % for the worst combi-
nation (deoxy-Hb/QDA) and 86.6 % (oxy-Hb/SVM) for the
best combination.

Concerning features, oxy-Hb features perform signifi-
cantly better than deoxy-Hb features. Increases in oxy-
Hb and only slight decreases in deoxy-Hb are typical for
cortical activation [19]. Analogously, increases in deoxy-
Hb accompanied by decreases of oxy-Hb indicate cortical
deactivation [13]. Although deoxy-Hb responses appear to
be more localized and topographically closer to activated
areas [5], [8], [9] than the more widespread changes in
oxy-Hb [12], [13], deoxy-Hb changes are smaller than oxy-
Hb changes and exhibit higher variance. Consequently, oxy-
Hb seems to be a more suitable feature for single trial
classification. The present investigation also supports this
hypothesis. The better performance of oxy-Hb features is
consistent over all methods with the exception of LDA (see
Figure 1). This exception can be explained by an extremely
low classification accuracy in one subject when using oxy-
Hb and LDA.

Concerning classification methods, our statistical analy-
sis shows that regularized classifiers (sLDA, sQDA, SVM)
perform significantly better than non-regularized classifiers
(LDA, QDA). This result was expected, because regularized
classifiers have demonstrated their superiority over non-
regularized classifiers many times, especially when the trials-
to-features ratio is low [4]. This is particularly relevant
for fNIRS-based BCIs, where training data are typically
scarce due to long measurement time per trial. However, if
more training trials are available the performance difference
between regularized and non-regularized classifiers should
become less [4]. Another result is that regularized linear
methods (sLDA, SVM) performed significantly better than
the regularized non-linear method (sQDA). This performance
difference is mainly caused by two participants, which ex-
hibit low classification accuracies when using sQDA. Al-
though SVM and sLDA performed equally well, training an
sLDA model is computationally less demanding than training
an SVM model. The former uses an analytic solution for the
optimal regularization parameter, whereas the latter relies on
time-consuming cross-validation.

Although the comparison revealed significant results, some
limitations should be mentioned. First of all, the number of
data sets is low. However, considering the increase of the
classification accuracy using regularized classifiers, our find-
ings suggest that the use of such methods is recommended,
especially if the amount of data is limited. To explore this in
more detail, a bigger data set is needed. Another limitation is
the type of task. In this investigation, only spatio-temporal
hemodynamic patterns induced by performing a MA task
(versus rest) were classified. To allow a more general state-
ment on the suitability of the different methods, additional

tasks (e. g. motor imagery) have to be investigated. Further it
should be mentioned that much more possible classification
methods are known. Some of them could be superior to our
tested methods.

In conclusion, we strongly recommend to use regularized
classifiers with fNIRS-based BCI MA data. Considering
simplicity and computational effort, sLDA seems to be the
method of choice.
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