
Evaluating a Four-Class Motor-Imagery-Based Optical Brain-Computer
Interface*

Alyssa M. Batula,1 Hasan Ayaz,2 and Youngmoo E. Kim1

Abstract— This work investigates the potential of a four-
class motor-imagery-based brain-computer interface (BCI) us-
ing functional near-infrared spectroscopy (fNIRS). Four motor
imagery tasks (right hand, left hand, right foot, and left
foot tapping) were executed while motor cortex activity was
recorded via fNIRS. Preliminary results from three participants
suggest that this could be a viable BCI interface, with two
subjects achieving 50% accuracy. fNIRS is a noninvasive, safe,
portable, and affordable optical brain imaging technique used
to monitor cortical hemodynamic changes. Because of its porta-
bility and ease of use, fNIRS is amenable to deployment in more
natural settings. Electroencephalography (EEG) and functional
magnetic resonance imaging (fMRI) BCIs have already been
used with up to four motor-imagery-based commands. While
fNIRS-based BCIs are relatively new, success with EEG and
fMRI systems, as well as signal characteristics similar to fMRI
and complementary to EEG, suggest that fNIRS could serve to
build or augment future BCIs.

I. INTRODUCTION

A brain-computer interface (BCI) is a system that records
and classifies human brain signals into commands to control
a computer. Recording brain signals directly allows the
BCI to bypass the neuromuscular system, making them
a promising research area for restoring communication or
movement in patients suffering from neuromuscular diseases
[1]. Additionally, such a system could serve as a secondary
control method for healthy individuals, freeing the user’s
hands for performing other tasks while ideally incurring
minimal mental strain.

A. fNIRS BCI

Functional near infrared spectroscopy (fNIRS) is a non-
invasive optical brain imaging technique that has shown
promise for future BCI applications [2]–[6], including the
detection of motor movements [7]–[9]. It has also been used
alongside bio-signals [10] and to augment existing EEG
BCIs [11]. fNIRS uses near infrared light to measure blood
oxygenation changes in the brain, which are correlated with
functional activity such as cognitive tasks and motor activity
[12], [13]. The devices are low-cost, wearable, and can be
used wirelessly [14]. This allows them to be used in more
natural settings, such as sitting at a desk, rather than an
artificial lab environment. While fNIRS has a time delay
due to the slow hemodynamic response, it has good spatial
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resolution and is free from most muscle artifacts, such as
eye blinks.

B. Motor-Imagery-Based BCI

Motor imagery is an imagined movement of the body,
typically performed in preparation for motor execution (or
actual movement), during which the muscles remain inactive.
The hemodynamic response produced is similar to that of
motor execution, but with a smaller increase in blood flow
and slight delay in activation time [15]. Motor imagery could
provide an intuitive mapping for BCI commands, since the
required tasks would be closely related to naturally produced
muscle movement commands. Natural and intuitive map-
pings for commands increase the usability of a BCI system
while decreasing the mental strain required for operation.

Several EEG- or fMRI-based studies have used motor
imagery as the sole input method with two [16], three [17], or
four [18] motor imagery classes. The primary motor imagery
classes are left hand vs. right hand, with a few studies using
both feet together as a third class and tongue motor imagery
as a fourth class. Other groups have used motor imagery as
one of several control methods (e.g. motor imagery and P300
signal) in a “hybrid BCI” [19].

While most motor imagery (or motor execution) fNIRS
BCI studies have focused on left vs. right hand classification,
Kaiser et al. have looked at detecting right hand vs. both feet
motor imagery [20] and Abibullaev et al. studied directional
movements of the forearm [21]. Ito et al. developed a four-
class BCI to differentiate right arm movement, left arm
movement, lower leg movement, and rest [22].

The objective of this paper is to assess the potential of a
four-class motor imagery fNIRS BCI using left hand, right
hand, left foot, and right foot tapping. The BCI accuracy is
evaluated individually for each subject in an offline analysis.

II. METHODS

A. Participants

Three healthy subjects participated in the experiment,
which was approved by the Drexel University institutional re-
view board. Subjects were aged 18-35, right-handed, English
speaking, and with vision correctable to 20/20. No subjects
reported any physical or neurological disorders, or were
on medication. Subjects were informed of the experimental
procedure and provided written consent prior to participating.

B. fNIRS Recording

Twenty-four channels of fNIRS data were recorded using a
Hitachi ETG-4000 optical topography system. Each channel
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recorded oxygenated and deoxygenated hemoglobin levels
sampled at 10 Hz. Fig. 1 shows the sensor arrangement with
reference to Cz (according to the international 10/20 system).

C. Experiment Protocol

Subjects attended two training sessions. Each subject sat
in front of a computer screen with both feet flat on the
floor and hands in his or her lap or on chair arm rests with
palms facing upwards. The training sessions were split into
two runs as shown in Fig. 2. The first run had 16 trials of
motor execution, and the second run had 40 trials of motor
imagery. Each run had an equal number of the four tasks in
a randomized order. Motor execution was performed before
motor imagery in order to improve the subject’s ability to
imagine performing the task.

In each trial, subjects performed one of four tasks: right
hand, left hand, right foot, or left foot tapping. During motor
execution tasks, subjects were instructed to tap their fingers
against their palm (for hand tasks) or tap their foot and
toes on the floor while keeping their heel on the ground
(for foot tasks). During motor imagery tasks, subjects were
instructed to imagine performing these tasks, but refrain from
any muscle movement. Subjects self-paced the movements or
motor imagery at approximately one per second.

D. Trial Protocol

The training session trial timing diagram is shown in Fig.
3. During the six seconds of rest a cross cue was displayed
and subjects were instructed to relax their mind and refrain
from any movement. Immediately after the rest period, the
cue for the next task (left hand, right foot, etc.) was displayed
in the middle of the screen for three seconds. Subjects were
instructed not to perform motor execution or imagery during
this display, but to wait until the feedback display was shown
(Fig. 4). The feedback display showed the probability of
selecting each class with the real-time classifier, in order to
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Fig. 1: The fNIRS sensor layout. Channels are numbered 1-
24, light sources are shown as red squares and detectors are
blue squares. The spacing between an adjacent source and
detector is 3 cm.
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Fig. 2: Trial organization for the two sessions. Tasks are
separated into motor execution or motor imagery.

help the subject improve his or her performance [23]. After
each 30-second task period, a results screen showing the
final prediction probabilities for each task was displayed for
six seconds. Each trial lasted 45 seconds, and was followed
immediately by the next trial.

III. DATA ANALYSIS

A total of 32 (8 per task) motor execution and 80 (20
per task) motor imagery trials were collected from each
participant. Each trial had 30 seconds of both oxygenated
hemoglobin (oxyHb) and deoxygenated hemoglobin (de-
oxyHb) data from each of the 24 channels, totaling 48 data
sequences per trial. An additional 24 sequences of total
hemoglobin (totalHb) data were created by adding the oxyHb
and deoxyHb sequences together for each channel. The data
were recorded at 10 Hz and low-pass filtered at 0.1 Hz. Trials
were classified by a support vector machine (SVM) [24].

A. Online Analysis

During the experiment, SVM classification probabilities
for each class were shown to the subject as feedback, updated
twice per second. The first set of measurements for each trial
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Fig. 3: Diagram of individual trial timing.

Fig. 4: Subject feedback display during right foot task. The
length of each point is proportional to the class’s probability.
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was used as the baseline and subtracted from all following
data values for that trial. The first five seconds of each trial
were not used and no feedback was shown to the subject due
to the slow hemodynamic response. The online classifier was
trained on preliminary data for the first session, and retrained
on the subject’s own data for the second session.

B. Offline Analysis

The recorded data were inspected for signal quality. Arti-
facts (such as spikes or sudden baseline shifts) were removed,
as well as any channels that had a low signal-to-noise ratio
or became saturated [25]. Data for a trial were completely
removed if more than 70% of the data was rejected from the
baseline data (first five seconds of the trial) or the analysis
data (last 25 seconds of the trial).

C. Features

For offline analysis, the individual channels were com-
bined into six groups by physical location, resulting in three
groups on each half of the brain. The channels belonging
to each group were averaged to create a single time series,
using the channel groupings shown in Table I. This reduced
the likelihood of over-fitting the classifier by reducing the
number of calculated features, ideally replacing a larger
feature set with a smaller group of more informative features.

TABLE I: Channels assigned to each group and their relative
location in the sensor array.

Group Location Channels
1 Right Top 1,2,3,4,5
2 Right Middle 4,6,7,9
3 Right Bottom 8,9,10,11,12
4 Left Bottom 13,14,15,16,17
5 Left Middle 16,18,19,21
6 Left Top 20,21,22,23,24

For each trial, the data were baseline corrected using the
average of the first five seconds of the task, and features were
calculated on the remaining 25 seconds.

Four types of features were calculated: the mean, median,
range (difference between maximum and minimum value)
and slope of the line of best fit. Each feature was calculated
separately for oxyHb, deoxyHb, and totalHb on the data
series from each of the six groups. Feature sets were created
for oxyHb, totalHb, and the concatenation of oxyHb and
deoxyHb features. Additionally, the set of all feature types
concatenated together was examined for each of the three
hemoglobin combinations, for 15 total feature sets.

D. Classifier Training

The data were divided into a testing set of 24 trials,
evenly distributed between the four classes, and a training set
consisting of the remaining trials. If no trials were removed
due to artifacts, the training set had 56 examples, or 70% of
the total dataset. A classifier was selected using a grid search
and 7-fold cross-validation to determine the best performing
features and kernel, linear or radial basis function (RBF), on

the training set. The best performing classifier and feature
set were then evaluated on the testing set.

IV. RESULTS
Motor imagery classification was performed using a four-

class one-vs-all SVM. Table II shows the accuracy for each
subject, along with the kernel and feature type selected on
the validation set. All three subjects performed better than
chance (25%) and two subjects achieved 50% accuracy. All
subjects achieved their best results using totalHb, as opposed
to oxyHb or combining oxyHb and deoxyHb features. Two
subjects performed best with a RBF kernel and the slope
feature, while one subject used a linear kernel and the mean
feature.

TABLE II: Classification accuracy of motor imagery task
data for each subject, chance level is 25%.

Subject 1 Subject 2 Subject 3
Accuracy 54% 50% 33%
Features Mean Slope Slope
Hb Type totalHb totalHb totalHb
Kernel Linear RBF RBF

Fig. 5 shows a confusion matrix for the best and worst
performing subjects (subject 1 and subject 3, respectively) on
the testing set. The confusion matrix for subject 1 shows high
classification percentages on the diagonal, corresponding to
higher accuracy. The most problematic task was right foot,
which was most frequently misclassified as left hand. Subject
3 shows a much weaker diagonal on the confusion matrix,
indicating frequent task misclassification. In particular, right
hand was often mistakenly classified as left hand or left foot.
Misclassifications for subject 1 appear to be more common
between tasks involving the same side of the brain (e.g. left
hand and left foot), while subject 3 does not appear to follow
this pattern as strongly.

V. CONCLUSIONS
This preliminary study shows that fNIRS may prove useful

in developing a four-class motor imagery BCI, with results
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Fig. 5: Classifier confusion matrices for subjects 1 and 3.
Classes are left hand (LH), left foot (LF), right foot (RF),
and right hand (RH), and the colors correspond to frequency
of classification (percent) for each task.
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showing above-chance levels for all subjects. Future analysis
could improve performance by utilizing more informative
features and classifiers, particularly if they model the time-
course of the channels rather than computing single-number
feature values (e.g. mean).

The confusion matrices show that misclassifications are
not necessarily between adjacent areas of the brain (e.g. con-
fusing left hand and left foot). A closer study of the activation
patterns may yield insights into improving classification by
making better use of spatial information, such as subject-
specific channel groupings or features that incorporate spatial
information. Motor execution data could prove useful in
choosing channels or groupings to use for individual subjects.

Better selection of motor tasks could potentially improve
performance, such as combining both feet into a single
class as is often done with EEG. Additionally, one subject
self-reported difficulty imagining movements, which may
have hampered the BCI accuracy. Further training might be
required for improved performance. Finally, future analysis
should examine the minimum task time required for accurate
predictions in order to reduce the trial time and improve the
utility of the BCI.
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