
  

 

Abstract — Single-trial classification of near-infrared 

spectroscopy (NIRS) signals for brain-computer interface (BCI) 

applications has recently gained much attention. This paper 

reviews research in this area conducted at the PRISM lab 

(University of Toronto) to date, as well as directions for future 

work. Thus far, research has included classification of 

hemodynamic changes induced by the performance of various 

mental tasks in both offline and online settings, as well as offline 

classification of cortical changes evoked by different affective 

states. The majority of NIRS-BCI work has only involved able-

bodied individuals. However, preliminary work involving 

individuals from target BCI-user populations is also underway. 

In addition to further testing with users with severe disabilities, 

ongoing and future research will focus on enhancing 

classification accuracies, communication speed and user 

experience.  

I. INTRODUCTION 

Brain computer interfaces (BCIs) can provide individuals 
with severe motor impairments with a means of 
communicating and interacting with their environment using 
only their cognitive activity [1]. Near-infrared spectroscopy 
(NIRS) is a non-invasive optical imaging technique that 
measures hemodynamic brain activity. In the past decade, 
NIRS has gained increasing attention as an access modality 
in BCIs. NIRS-BCIs are a key topic of investigation at the 
Pediatric Rehabilitation Intelligent Systems Multidisciplinary 
(PRISM) lab at the University of Toronto.  

This paper reviews the past NIRS-BCI work conducted at 
the PRISM Lab, and provides insight into the current and 
future research directions. Section II describes the past work. 
To date, we have published a total of 13 papers exploring 
single-trial classification of NIRS signals measured from the 
anterior prefrontal cortex (aPFC) [2]–[13]. Section III 
describes the ongoing and future NIRS-BCI research at the 
PRISM lab, aimed at improving classification accuracies, 
communication speed and user experience.  

II.  PAST RESEARCH 

 Single-trial classification of NIRS signals for BCI 
applications can either be performed offline, immediately 
following the completion of data collection, or online, as the 
data are collected. Offline classification is typically used to 
establish suitable approaches for specific classification  

 
L.C Schudo, S. Weyand and T. Chau are with the Bloorview Research 

Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, 

Ontario, Canada and the Institute of Biomaterials and Biomedical 

Engineering, University of Toronto, Ontario, Canada (T Chau phone: 416-

425-6220, ext. 3515; fax: 416-425-1634; e-mail: tom.chau@utoronto.ca). 

problems. Online classification is needed for real-time 
communication and control.  

BCIs can also be categorized as either ‘active’, ‘reactive’ 
or ‘passive’ [14]. In an active system, the user is required to 
purposefully produce changes in their brain activity using a 
BCI control task to indicate intent. Alternatively, a reactive 
system monitors the user’s natural response in reaction to an 
external stimulus. A passive BCI monitors spontaneous brain 
state to derive contextual user information. A classification 
accuracy of 70% is often cited as the accepted minimum 
threshold for effective communication with a BCI [15].  

At this time, research conducted at the PRISM lab has 
included studies involving able-bodied participants exploring 
active and reactive BCIs in an offline setting, and active 
online BCIs. An offline case-study including a client with 
motor impairments has also been conducted. Table 1 
summarizes the studies conducted to date. 

A. Active NIRS-BCIs – Offline Analysis 

To date, our NIRS-BCI studies have largely concentrated 
on the development of actively controlled systems. A key 
focus of this research area has been the suitability of 
different cognitive tasks for BCI control. Mental arithmetic 
(MA) [2]–[5], [8] and the Verbal Fluency Task (VFT) [9] 
have proven to be potent mental tasks for driving an NIRS-
BCI, with average offline accuracies ranging between 71.2 ± 
3.3% and 76.1 ± 8.4% in differentiating these tasks from rest 
or a control condition. Mental singing (MS) has also been 
considered for NIRS-BCI use [4] but differentiation from 
rest has only reached an average rate of 62.7 ± 9.3%, 
suggesting that a BCI driven by MS may not be suitable for 
all users. However, MS can be effective in a 2-class 
synchronous BCI when used together with MA. In 
differentiating these two tasks, an average classification 
accuracy of 77.2 ± 7.0% was obtained with 10 individuals 
[2]. The possibility of a 3-state BCI supporting MA, MS and 
rest was also considered by Power et al., who were able to 
differentiate the 3 classes at an average adjusted accuracy of 
56.2 ± 8.7%, well above levels of random chance [6].  

Perhaps the variability in success with the different tasks 
can be attributed to the unique cognitive faculties invoked by 
each task. While MA and VFT utilize one’s working 
memory, MS heavily relies on an emotional response, which 
may be more challenging to induce in some individuals. 
Further exploration of new cognitive tasks for NIRS-BCI 
control is needed. In addition to evaluating BCI control 
tasks, other aspects of an NIRS-based communication 
pathway have been explored, but to a lesser extent. 
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Communication speed is a significant concern for 
hemodynamic-based BCIs. Due to the inherent 5-8s post- 
stimulus latency of the hemodynamic response, most studies 
have employed a 20s response interval [2]–[5], [8], [9]. 
However, post-hoc analyses have suggested that shorter 
durations, such as 15 or 10s, may be feasible for some 
individuals [4], [8]. A shortened response interval would not 
only improve communication rates, but would also decrease 
the mental demand placed on the BCI user.In terms of signal 
classification, various offline alternatives have been 
considered, with linear discriminant analysis being the most 
prevalent choice [3]–[9].  

B. Active Hybrid BCIs with NIRS – Offline Analysis 

NIRS measurements can be used simultaneously with 
other modalities to potentially improve classification 
accuracies. Motivated by the enhanced results achieved by 
combining NIRS with electroencephalography (EEG) [16], 
[17], Faress et al. explored the development of an active 
hybrid BCI driven by the VFT that combines NIRS and 
Transcranial Doppler Ultrasonography (TCD) [9]. TCD is a 
non-invasive modality that measures blood flow velocity in 
the cerebral arteries of the brain. With the multi-modal TCD-
NIRS system, VFT and post-activation rest were 
differentiated offline at an average accuracy of 86.5 ± 6.0% 
across 9 participants. Comparatively, average accuracies of 
76.1 ± 9.9% and 79.4 ± 10.3% were achieved using only 
NIRS and TCD, respectively. Classification accuracies 
achieved with the multimodal NIRS-TCD system were 
significantly higher than those obtained using either of the 
measurement modalities alone for five of the nine 
participants. 

C. Reactive NIRS-BCIs – Offline Analysis 

For some individuals, performing a specific cognitive  

 

 

 

 

 

task to exert BCI control may not be feasible. Alternatively, 

NIRS can be used to detect functional intent by classifying 

evoked, rather than induced modulations in cortical activity. 

To this end, NIRS-based detection of emotions has been 

explored using musically- [12] and visually- [10] induced 

affective states. With both forms of induction, positive and 

negative emotional states were discriminated at rates, on 

average, greater than 70%. The possibility of evaluating 

subjective preference through the classification of NIRS 

signals has also be considered [13]. These initial results 

demonstrate great potential in using NIRS to automatically 

detect an individual’s response to external events through a 

hemodynamic response alone. However, reactive NIRS-BCI 

development is still in its infancy. To advance this type of 

BCI, the robust differentiation of multiple levels of 

emotional valence and arousal will need to be achieved.  

D. Active NIRS-BCIs – Online Analysis 

Although the majority of NIRS-BCI studies have 
exclusively analyzed data offline, progress has been made 
towards online classification of hemodynamic activity, an 
imperative for real-world communication and control. Online 
systems provide a single instance of classifier training 
(unlike cross-validation in an offline analysis) and offer user 
feedback. An offline comparison of various online classifier 
training paradigms found that although a sufficient amount of 
training data could be collected over multiple sessions, 
including test session-specific training data resulted in 
improved online testing results [5]. This type of training 
paradigm was tested in an online system driven by MA, with 
the provision of user feedback in terms of a dynamic 
topographic map representing prefrontal hemodynamic 
activity [7]. An average online accuracy of 77.4 ± 10.5% was 
achieved across 2 sessions, which aligns with previous 
offline results [8]. MS has also been tested in an online 

 

 
 

 

 
Paper 

States 

Differentiated 

No. 

Subjects 

Accuracy (%) 

(mean ± std dev)  
NIRS Features Classifier 
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Power 2010 MA vs MS  10 77.2 ± 7.0 AC intensity HMM 

Power 2011 
MA vs rest,  

MS vs rest 
8 

71.2 ± 3.3 - MA vs rest  

62.7 ± 9.3 - MS vs rest 
Slope of AC intensity LDA 

Power 2012 MA vs rest 1 71.1 Slope of [Hb] & [HbO]  LDA 

Power 2012 MA vs MS vs rest 8 56.2 ± 8.7 Slope of AC intensity LDA 

Faress 2013 
VFT vs control 

state 
9 

86.5 ± 6.0 - hybrid  

76.1 ± 8.4 - NIRS 

 

Slope of [Hb], [HbO] & [tHb] LDA 
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 Chan 2012 MA vs rest 10 63.0 ± 18.9 [Hb] and [HbO]  ANN 

Schudlo 2014 MA vs rest 10 77.4 ± 10.5 Slope of [Hb], [HbO] & [tHb] LDA 

p
a
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e
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e
 Tai 2008 

positive vs 

negative emotions 
10 84.6 ± 8.2  

Mean, skewness, kurtosis, total signal energy of 

[Hb] & [HbO]  
LDA, SVM 

Moghimi 

2012 

positive vs 

negative emotions 
10 

71.9  ± 8.2 

 

Laterality, mean, slope, coefficient of variation, 

amplitude change of [Hb] & [HbO] 
LDA 

TABLE 1. SUMMARY OF RESULTS. Accuracies represent average classification rates across all study participants.  MA = Mental Arithmetic, 

MS = Mental Singing, VFT = Verbal Fluency Task. [Hb], [HbO, and [tHb] =  deoxygenated, oxygenated, and total  hemoglobin, respectively. 

HMM = Hidden Markov Models, LDA = Linear Discriminant Analysis, ANN = Artificial Neural Networks, SVM = Support Vector Machine.  
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system with user feedback in the form of a dynamic bar 
graph depicting the instantaneous (continuous-valued) 
classifier output [11]. Although an average accuracy of 63.0 
± 18.9% was achieved in this 2-session study, these online 
results are comparable to those achieved offline under a 
similar task paradigm [4].  

Though the online NIRS-BCI results achieved so far are 
encouraging, there is potential for improvement. Because an 
online system provides feedback, it affords the user an 
opportunity to learn and improve control over their 
hemodynamic activity. It is possible that with continued 
practice (via longer online studies), online results could 
eventually exceed those obtained offline. Additionally, with 
more proficient control over one’s cortical activity, the 
response interval or classifier training time could be reduced 
without significant losses in system performance.  

E. Client Case Study – Offline Analysis  

 Limited research has been conducted with the target 
user population (i.e. non-verbal individuals with severe 
motor impairments). Target BCI users include individuals 
with, for example, amyotrophic lateral sclerosis, severe 
cerebral palsy (CP), high-level cervical spinal cord injuries, 
or severe muscular dystrophies [1]. In a case study, Power 
and Chau investigated the potential of an NIRS-BCI with an 
individual with Duchene muscular dystrophy (DMD) [3]. 
The 20-year old participant underwent two data collection 
sessions in which NIRS measurements were taken during 
MA performance and rest. The two mental states were 
differentiated at an average offline accuracy of 71.1%. This 
classification rate is in line with previous studies on able-
bodied participants [4], suggesting that an NIRS-BCI driven 
by MA may be suitable for individuals with neuromuscular 
disorders. Additional investigations with individuals with 
DMD and other types of motor impairments are warranted.   

III. ONGOING & FUTURE RESEARCH DIRECTIONS  

There are currently several ongoing and future research 
directions being explored by members of the PRISM lab 
including: investigating new task combinations, exploring 
personalized mental task selection, weaning off mental tasks 
to achieve voluntary self-regulation, moving beyond a binary 
choice paradigm, measuring from brain areas other than the 
PFC, and more thorough testing with client populations. 

A. Investigating New Tasks & Task Combinations 

Many researchers have used MA [2], [4], [5], [7], [8], 
[18], or motor imagery [18]–[20] for NIRS-BCI control. 
These tasks appear to be repeatedly chosen since they have 
consistently proven to induce significant hemodynamic 
changes for a majority of study participants. Single-trial 
classification of VFT and MS have also been well explored 
[2], [4], [9], [11]. However, from a usability perspective, 
these tasks may not be suited to all individuals during long-
term BCI use, especially if they are not particularly 
enjoyable to the user. A larger collection of user-friendly and 
effective NIRS-BCI control tasks would expand the 
versatility of this technology. Other tasks that are known to 

induce a measureable hemodynamic response include: 
mental rotation [21], relaxing with counting [22], thinking of 
happy thoughts [10], and focused attention [23].  

B. Exploring Personalized Mental Tasks 

In addition to exploring new prescribed task 
combinations, there is ongoing research on the development 
of a more user-specific BCI, which allows users to choose 
their own personalized mental tasks. Use of individually-
optimized control tasks has been previously considered in 
EEG-BCI work [24], and exploration of this approach in an 
NIRS-based pathway is merited. This research is motivated 
by the high inter-subject variability in the hemodynamic 
response and mental task preferences of users. A BCI that 
allows users to choose their own tasks could be significantly 
easier to use than one that only supports prescribed mental 
tasks. Additionally, a personalized BCI may be more 
enjoyable to use, and in turn result in greater user satisfaction 
and adoption. A study is currently underway where users are 
asked to select their preferred BCI control tasks based on  
performance and ease of use ratings. 

C. Weaning from Mental Tasks to Voluntary Self-

Regulation of Cortical Activity 

Research investigating actively-controlled NIRS-BCIs 
has primarily focused on using mental tasks to control the 
system. However, it is possible that users can be weaned off 
these specific tasks and achieve ‘self-regulation’, i.e., 
voluntary control of their cortical activity. Previous EEG-
BCI studies have shown that users were able to voluntarily 
control their physiological signals without the need to 
perform a particular mental task [25]. Perhaps self-regulation 
of cortical activity can also be achieved using feedback of 
NIRS measurements. A BCI driven by voluntary self-
regulation could require a lower workload, be more intuitive, 
and be easier to use than a BCI controlled by specific mental 
tasks. A study investigating the feasibility of using a 
neurofeedback-based training paradigm to transition from 
mental task performance to self-regulation of one’s 
hemodynamic activity is currently underway.  

D. Moving Beyond Binary Classification 

To date, single-trial classification of NIRS signals has 
primarily focused on 2-class problems, such as 
differentiating a task from rest. As NIRS-BCI research 
advances, it is desirable to increase the number of control 
channels accessible to users. A BCI that supports 3 or more 
states would facilitate faster communication. Though the 
results for a 3-class system obtained by Power et al. [6] are 
encouraging, improvements are necessary for effective 
communication. Transitioning from binary to ternary 
classification comes with several challenges, such as 
determining suitable mental task combinations, and 
overcoming higher misclassification probabilities.  

E. Considering Other Brain Regions 

For classification of higher-level cognitive tasks and 
affective states, NIRS measurements have primarily been 
taken from the aPFC. This region plays a key role in 

1998



  

decision- making, working memory and emotional response. 
However, mental activities often activate multiple brain 
regions, rather than a single, isolated area. This could be 
exploited in an NIRS-BCI. Considering areas other than or in 
addition to the aPFC may improve classification rates, 
especially if different tasks activate distinct brain regions. 
Indeed, others have begun considering multiple brain regions 
for NIRS-BCIs [18] and further exploration of optimal task 
and brain region combinations is warranted.  

F. Continued Testing with Potential BCI Users 

NIRS-BCI studies involving target user populations have 
been limited in both number and participant size. It cannot 
be assumed that the results obtained with able-bodied adults 
will extend to client populations[26]. NIRS data collection 
with clinical populations may present unique challenges. 
Subject movement is a particular concern [3]. For users 
prone to movement, such as individuals with severe 
hyperkinetic CP, motion artifact correction must be deployed 
to salvage data and limit user frustration. However, many of 
the motion correction algorithms proposed for NIRS signals 
to date cannot be implemented in real-time. Online artifact 
correction will be essential for thorough testing on different 
target user populations. Other concerns with clinical testing 
of NIRS-BCIs include the suitability of certain BCI control 
tasks, visual requirements of a system’s interface, and 
participant recruitment.  
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