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Abstract— Low dose positron emission tomography(PET)
reconstruction remains a challenging issue for statistical PET
reconstruction methods due to the low SNR of data. Due to the
ill-conditioning of image reconstruction, proper prior knowl-
edge should be incorporated to constrain the reconstruction.
Since PET images are piecewise smoothing, we propose the
total variational (TV) minimization based algorithm for low
dose PET imaging. The fundamental power of this strategy
rests with the edge locations of important image features tend
to be preserved thanks to TV regularization. In addition, a
new computational method have been employed with improved
computational speed and robustness. Experimental results on
Monte Carlo simulations demonstrate its superior performance.

I. INTRODUCTION

Positron emission tomography (PET) [1] is a nuclear
medicine, functional imaging technique that produces a
three-dimensional image of functional processes in the body.
The system detects pairs of gamma rays emitted by a
positron-emitting radionuclide (tracer), which is introduced
into the body on a biologically active molecule.

The realization of low dose PET is a promising task. It
means the reduction of radiation in PET scanning. Less ra-
dioactive tracer can cause the reduction of the cost and make
PET scanning healthier for both patients and staff. Further
more, there are close clinical injection rule in some certain
circumstances, such as pediatric PET scanning. Common
adult injection rules prescribe either a dose proportional to
weight or a fixed dose. If better quality than in average-
adult studies does not justify the associated dose burden,
attractive options are to reduce scan time, reduce dose, or
any combination of the two [2], [3].

Iterative statistical methods have been the primary focus
of many recent efforts, including notable examples such as
maximum likelihood (ML)-expectation maximization (EM)
[4], [5], maximum a posteriori (MAP) [6], [7], and pe-
nalized weighted lease-squares (PWLS) [8]. Nevertheless,
these iterative statistical methods still have certain drawbacks
especially for low dose case. First, they face difficulties
in handling low SNR data. Secondly, after random events
substraction, correction for scanner sensitivity and dead
time, attenuation and scatter corrections, the actual statistical
model of measured data violates the statistical assumption.
For any statistical image reconstruction framework, it is clear
that accurate statistical measurement model play an essential
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role in achieving good reconstruction [9]. Without additional
constraints, it can be expected that the statistical methods
could not give satisfied results. In order to overcome these
issues, other constraints are needed.

One important PET image feature are the edges: these
are places in an image where there is a sharp change in
image properties, which happens for instance at object (i.e.
tumor) boundaries. Unlike statistically-based methods, total
variational(TV) is incorporated to provide edge-preserving
guidance for the reconstruction. In this research, the recon-
struction problem is transformed to a minimization problem
of augmented Lagrangian function. The data fitting terms
and the regularization term are included in the function.
And the alternating minimization involving 2D shrinkage-
like formula and the steepest descent method is applied to
solve the minimization problem.

We realize that several efforts in PET image reconstruction
are of relevance to our work. Nonlinear variational method
have been proposed into the reconstruction process to make
an efficient use of a-priori information and to attain improved
imaging results [10]. Poisson based negative log likelihood
function is utilized in the algorithm. A total variation based
EM algorithm has been proposed. It enhanced object edges
far better than the EM-method [11], but still with limited
success due to strong computational difficulties in the mini-
mization with total variation as a regularization function.

The advantages of TV minimization stem from the prop-
erty that it can recover not only sparse images, but also
dense staircase piecewise constant images. In other words,
TV regularization would succeed when the gradient of the
underlying image is sparse. It is the circumstance of low
dose PET reconstruction. The method proposed – Alternat-
ing minimization of augmented Lagrangian is to be called
AMAL for short.

II. METHOD

A. PET imaging model

PET acquired data are organized in a series of parallel
slices that can be reconstructed independently. And every
slice of raw data collected by a PET scanner is a list of
coincidence events representing near-simultaneous detection
of annihilation photons by a pair of detectors. Each coinci-
dence event represents a line in space connecting the two
detectors along which the positron emission occurred (the
line of response (LOR)). The raw data from PET is organized
in sinogram.

Therefore, PET image reconstruction problems are specific
cases of the following general inverse problem: find an
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estimate of radioactive activity map u from a measurement
b by

b = Au+ noise (1)

In the process of PET imaging, ui is the radioisotope
concentration in the ith pixel, A is the system matrix that
describes the tomographic geometry and the physical factors.
Under the circumstance of low dose PET, the number of
coincidence events in b is much smaller than the normal
PET. It makes the accurate reconstruction a challenge issue.

The image u to be reconstructed is piecewise smoothing.
And the edges in the image describe the structures of tissues,
which is an important feature. Some hybrid technologies like
PET-CT and PET-MRI have been developed to obtain precise
structures of tissues.

B. Problem formulation

Total variation regularization is a recently emerging image
processing techniques using partial differential equations
which has been shown to be very successful in many image
processing applications. It is based on the principle that
images with excessive and possibly spurious detail have high
total variation. According to this principle, reducing the total
variation of the image subject to it being a close match to the
original image, removes unwanted detail whilst preserving
important details [12].

Total variation regularizer was first proposed for image
denoising by Rudin, Osher and Fatemi in [13], and then
extended to image deblurring in [14]. In comparison to the
well known Tikhonov-like regularizers, TV regularizers can
better preserve sharp edges or object boundaries that are
usually the most important features to recover.

Thus we apply the TV regularization in the reconstruction.
The problem is formulated as:

min
u

{TV (u) +
µ

2
∥Au− b∥22} (2)

where µ is a parameter and TV (u) is defined as
∑

i ∥Diu∥,
the sum of the discrete gradient of activity map u of every
pixel i .

C. Solution

It is hard to solve the minimization problem (2) directly.
So we introduce a new variable w. At each pixel an aux-
iliary variable wi is introduced to transfer Diu out of the
nondifferentiable term ∥.∥. And problem (2) is transformed
to problem (3)

min
wi,u

∑
i

∥wi∥, s.t. Au = b and Diu = wi for all i (3)

To deal with the constrains, we transform the problem
(3) to a minimization problem of augmented Lagrangian
function, making the constrained problem an equivalent
unconstrained problem. And the corresponding augmented
Lagrangian function of problem (3) is

LA(wi, u) =
∑
i

(∥wi∥ − υT
i (Diu− wi)

+
βi

2
∥Diu− wi∥22)− λT (Au− b) +

µ

2
∥Au− b∥22

(4)

here the first term is the regularization term. and the differ-
ence between wi and Diu is penalized. The second and forth
terms are linear penalty terms. And the third and fifth terms
are quadratic penalty terms. These penalty terms ensure the
reconstruction fits the basic model (1) well. υi, βi, λ and
µ are the multipliers of the four penalty terms. In order to
make the result of every term a number rather than a matrix,
transpose of υ and λ are utilized in the equation (4). The
iterative algorithm of the alternating minimization is applied
to solve the minimizers: u and wi.

Let uk and wi,k represent the true minimizers of equation
(4) at kth iteration. wi,k+1 can be attained by

min
wi

LA(wi, uk) =
∑
i

(∥wi∥ − υT
i (Diuk − wi)

+
βi

2
∥Diuk − wi∥22)− λT (Auk − b) +

µ

2
∥Auk − b∥22

(5)

And it is equivalent to the problem follows:

min
wi

∑
i

(∥wi∥ − υT
i (Diu− wi) +

βi

2
∥Diu− wi∥22) (6)

For given β > 0 ,the minimizer of equation (6) is given by
the 2D shrinkage-like formula. So the we can get wi,k+1 by

wi,k+1 = max{∥Diuk − υi
βi

∥ − 1

βi
, 0}

(Diuk − υi

βi
)

∥Diuk − υi

βi
∥

(7)

With wi,k+1, we can achieve uk+1 by

min
u

LA(wi,k+1, u) =
∑
i

(∥wi,k+1∥ − υT
i (Diuk − wi,k+1)

+
βi

2
∥Diuk − wi,k+1∥22)− λT (Auk − b) +

µ

2
∥Auk − b∥22

(8)
Similar to the method to achieve wi,k+1, this subproblem

is equivalent to the problem follows:

min
u

∑
i

(−υT
i (Diuk − wi,k+1) +

βi

2
∥Diuk − wi,k+1∥22)

−λT (Auk − b) +
µ

2
∥Auk − b∥22

(9)
Its gradient is

dk(u) =
∑
i

(βiD
T
i (−Diu− wi,k+1)−DT

i υi)

+µAT (Au− b)−ATλ

(10)

here uk+1 can be achieved by forcing dk(u) = 0. The
problem is solved iteratively by the steepest descent method.
The iterative equation is :

uk+1 = uk − αkdkuk (11)

What left to do next is choosing α. Barzilai and Borwein
[15] suggested an aggressive manner to choose step length
for the steepest descent method, which is called the BB step
or BB method. This method is applied to choose α:

αk =
(uk − uk−1)

T (uk − uk−1)

(uk − uk−1)T (dk(uk)− dk(uk−1))
(12)
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D. Parameters

There are several parameters in the algorithm, and µ is
the most important one. It determines the weight of data
fitting term. Therefore, to get the best performance, the
value of µ should be set according to the noise level in the
observation b . For example, the higher the noise level is,
the smaller µ should be. The value of β also affects the
performance of AMAL, but it is much less important than
µ. We decide β by trying with values from 24 up to 213 .
For the initialization, we set initial µ0 and β0 much smaller
than µ and β, respectively.
υi and λ were initialized to be 0 and updated as long

as equation (4) is minimized at each iteration. According
to formula proposed by Hestenes [16] and Powell [17], the
update formulas of multipliers follow

υi,k+1 = υi,k − βi,k(Diuk − wi,k) (13)

λk+1 = λk − µk(Auk − b) (14)

The stopping tolerance determines the solution accuracy.
The smaller value results in a longer elapsed time and usually
a better solution quality. If the observation is noisy or the
problem is large-scale,stopping tolerance = 1 ∗ 10−3 might
be sufficient.

III. EXPERIMENTS AND RESULTS

The synthetic emission phantom with known radioactivity
concentrations is used in the GATE platform, as shown in
Fig. 1. The resolution of the original image is 64 by 64
pixels. 720 projections over 180 degrees are simulated. Five
sinograms are generated with the total number of photon
counts in the reconstruction plane set to be 5 ∗ 105, 1 ∗ 106,
3∗106, 6∗106 and 9∗106 respectively. A mask is calculated
to eliminate the pixels with 0 value in sinograms. And the
same mask is used on system matrix in order to make the
dimensions match. We compare our proposed method with
ML-EM algorithm. The relative errors bias and variance are
calculated through bias = 1

n

∑n
i=1(ûi−ui) and variance =

1
n

∑n
i=1(ûi − ui)

2. The analysis results are summarized in
Tab I. Images reconstructed by the two algorithms (EM
and AMAL) with five different measurements are shown in
Fig. 2, with the selected vertical profiles plotted versus the
corresponding pixel positions shown in Fig. 3.

These quantitative results and figures illustrate that the
images reconstructed by AMAL are visually more similar
to the ground truths with sharper edges. Both the bias and
variance of the images reconstructed by AMAL are lower
than the ones reconstructed by EM. The profile shows the
value of the 38th row of each image. And the result in Fig.
3 shows that line of AMAL fits the ground truth better than
one of EM. Furthermore, Tab I shows that AMAL is also
efficient under the circumstance of low dose PET imaging.
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TABLE I
QUANTITATIVE ANALYSIS OF THE RECONSTRUCTIONS FROM FIVE

COUNTING LEVEL DATA BY EM AND AMAL

Counting Level 5 ∗ 105 1 ∗ 106 3 ∗ 106 6 ∗ 106 9 ∗ 106

EM Bias 0.0357 0.0334 0.0329 0.0329 0.0330
EM Variance 0.0134 0.0123 0.0116 0.0116 0.0116
AMAL Bias 0.0319 0.0281 0.0275 0.0263 0.0248

AMAL Variance 0.0119 0.0102 0.0089 0.0078 0.0069

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position

V
al

ue

 

 
Groundtruth
Rec by EM
Rec by AMAL

(a) Profile of 5 ∗ 105

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position

V
al

ue

 

 
Groundtruth
Rec by EM
Rec by AMAL

(b) Profile of 9 ∗ 106

Fig. 3. Profiles of reconstructions from different data. X axis : the vertical
position of pixel; Y axis : value of the pixel.
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