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Abstract— Combined positron emission tomography and
computed tomography (PET-CT) produces functional data
(from PET) in relation to anatomical context (from CT)
and it has made a major contribution to improved cancer
diagnosis, tumour localisation, and staging. The ability to
retrieve PET-CT images from large archives has potential
applications in diagnosis, education, and research. PET-CT
image retrieval requires the consideration of modality-specific
3D image features and spatial contextual relationships between
features in both modalities. Graph-based retrieval methods
have recently been applied to represent contextual relationships
during PET-CT image retrieval. However, accurate methods
are computationally complex, often requiring offline processing,
and are unable to retrieve images at interactive rates. In this
paper, we propose a method for PET-CT image retrieval using
a vector space embedding of graph descriptors. Our method
defines the vector space in terms of the distance between a graph
representing a PET-CT image and a set of fixed-sized prototype
graphs; each vector component measures the dissimilarity of the
graph and a prototype. Our evaluation shows that our method
is significantly faster (≈800× speedup, p < 0.05) than retrieval
using the graph-edit distance while maintaining comparable
precision (5% difference, p > 0.05).

I. INTRODUCTION

Combined positron emission tomography and computed
tomography (PET-CT) [1] has introduced new clinical ca-
pabilities by enabling access to functional data (from PET)
in terms of anatomical context (from CT). PET-CT images,
for oncology, offer better diagnosis, tumour localisation, and
staging when compared to PET or CT alone [2]. PET-CT
images, for example, can visualise the anatomical location
and the aggressiveness of tumours; these image attributes
play an important diagnostic and prognostic role in can-
cer staging [3]. PET-CT image datasets are large and the
ability to search these imaging archives, as they expand
with increasing use of PET-CT, has potential for clinical
applications, education, and research [4].

Two key factors must be considered in the retrieval of
PET-CT images: unique image features from each modality
and modelling the contextual spatial relationships between
elements in different modalities. Graphs are a standard way
of representing structural or relational information [5]. In our
prior work [6], we proposed a graph-based retrieval method
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for PET-CT images. The vertices of our graph descriptor
represented regions of interest (ROIs) from both modalities
while the edges represented the spatial relationships between
the ROIs. Each vertex had a feature set that was tuned to
the modality of the ROI that it represented. We calculated
image similarity using the graph edit distance, which is the
conventional technique for comparing graphs (see Section II-
A). Our method achieved a higher precision when compared
to non-graph retrieval approaches, e.g., bag-of-words using
the Scale Invariant Feature Transform (SIFT) [7], [8], which
were unable to account for the spatial contextual information
in the PET-CT images. A limitation of our approach was that
our graph descriptors could not be used with state-of-the-art
algorithmic tools for pattern recognition that were designed
for feature vectors, e.g., support vector machines (SVMs).
In addition, the computational complexity of the graph edit
distance scaled exponentially with the size of the graphs [9]
thereby limiting its use to small graphs or applications where
time was not a critical factor.

The graph embedding process reported by Riesen and
Bunke [10] transformed graph descriptors into feature vec-
tors and enabled the use of vector space techniques on
graph-based data. In a preliminary study [11], we verified
that embedded graphs had a similar accuracy to standard
graph descriptors for PET-CT image retrieval. However, the
computation of the vector space embedding was based upon
the graph edit distance (see Section II-B) applied to a set of
graphs (potentially of any size). The embedding procedure
had to be performed offline due to the inefficiency of the
graph edit distance, thus severely limiting the ability for
interactive retrieval.

In this paper, we propose an efficient PET-CT image
retrieval technique that uses graphs embedded into a vector
space. The novelty of our method is in our definition of the
vector space in terms of fixed-size subgraphs that we term
‘fragments’. Our hypothesis is that using fragments as the
basis for the vector space will enable real-time embedding
of the query, lead to faster retrieval times but maintain a
comparable precision when compared to existing methods.
We evaluate the precision and efficiency of our method
through the retrieval of PET-CT images.

II. THEORETICAL BACKGROUND

A. Graph Edit Distance

The graph edit distance defines the dissimilarity of two
graphs by the cost to transform one into the other. This
transformation is achieved through a series of edit operations
(usually the insertion, deletion, and substitution of vertices
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or edges). There are many different sequences of operations
that can be applied to transform one graph into another. Thus
computing the graph edit distance is an optimisation problem
that attempts to find the sequence with the minimum cost.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with
vertex sets V1 and V2 and edge sets E1 and E2. Let Ω be
the set of all sequences of edit operations that transform G1

into G2. The graph edit distance between G1 and G2 can be
defined as:

Dg (G1, G2) = min
(o1,o2,...,on)∈Ω

n∑
i

c (oi) (1)

where c (oi) is a function for calculating the cost for the
edit operation oi = 〈X,Y 〉. Here X is a vertex from V1

(or an edge from E1) and Y is a vertex from V2 (or an
edge from E2). It is possible for either X or Y to be ∅
in the case of insertion or deletion. It is important to note
that the size of Ω is dependent upon the number of vertices
and edges in G1 and G2. Thus the brute force computation
of Ω requires extensive computation time as the number of
vertices increase.

B. Vector Space Embedding of Graphs

The aim of vector space embedding of graphs is to
represent complex graph structures in the form of a numerical
vector [9]. The transformation from a graph representation
to a vector representation enables the indirect application
of vector space algorithms to the domain of graphs. A
common approach for an embedding that preserves structural
information is to calculate the graph edit distance between
a graph and a set of prototype graphs that are chosen from
the dataset; each element of the vector is the distance from
a prototype [10]. Let P = {P1, P2, . . . , Pk} be the set of
prototype graphs. The vector embedding of a graph G given
P is defined as:

[Dg (G,P1) , Dg (G,P2) , . . . , Dg (G,Pk)] (2)

where Dg is the graph edit distance (Equation 1).
Under this formulation an embedded graph is described

in terms of the difference from multiple different prototypes.
An analogous way to envision this would be to consider the
prototype graphs as the axes of a k-dimensional space and an
embedded graph as a point in this space, i.e., the embedding
process converts G to a point in Rk.

III. METHODS

A. Dataset

We used 50 PET-CT studies of lung cancer patients
that were acquired on a Siemens Biograph mCT scanner
with a PET resolution of 200×200 pixels at 4.07mm2, a
CT resolution of 512×512 pixels at 0.98mm2, and a slice
thickness of 3mm. The PET and CT volumes were rescaled
to the same resolution prior to graph construction. Each
study contained between 1 to 7 tumours (inclusive). The
diagnostic reports, which were written by an experienced
specialist clinician, were included with the dataset. All data
were de-identified.
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Fig. 1. ROIs in PET-CT images used to constructing a graph descriptor.

We extracted the left and right lungs using a well-
established CT segmentation algorithm [12]. Tumours were
extracted from the PET scan using connected thresholding
based on the radiotracer uptake; we used a threshold of 40%
of the peak standard uptake value (SUV) [13]. We included
major anatomical structures above the diaphragm by coarsely
segmenting the brain and mediastinal tissues using connected
thresholding.

B. Graph Descriptor

Let G = (VP , VC , ES) be the graph descriptor for a
PET-CT image, where VP is the set of graph vertices
representing PET (tumour) ROIs, VC is the set of graph
vertices representing CT (anatomy) ROIs, and ES is the
set of edges. Each edge represented the spatial relationships
between the two vertices that were connected to it.

We restricted ES only to edges that emphasised spatial
anatomical variation or the location of tumours. Anatomical
variation was represented using edges between all pairs of
anatomical vertices (VC). The spatial location of a tumour
was modelled using edges between a tumour vertex and the
vertex of the spatially nearest organs. As an example, if vc ∈
VC and vp ∈ VP then an edge between vc and vp occurred
if and only if vc represented the organ spatially nearest to
the tumour represented by vp.

Figure 1 shows PET-CT images and the corresponding
graph representation. We extracted 3D features from the
ROI and indexed these on the graph vertices. The volume,
surface area, and length of ROIs were applicable to both
modalities and were thus indexed on all vertices. The CT
features (indexed only on elements of VC) included Har-
alick texture features [14] (entropy, contrast, correlation,
energy, homogeneity) and voxel sets. Thirteen gray-level co-
occurrence matrices (one for each unique direction) were
used to calculate the Haralick features for 3D images. The
PET features (indexed only on elements of VP ) included the
sphericity of the tumour ROI and several measures of the
tumour SUV: tumour homogeneity, maximum SUV, mean
SUV, and SUV variation.

Relationships between ROIs were indexed as features of
the edges in ES . These features included: distance, relative
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Fig. 2. Decomposing a graph into fragments with two vertices and one
edge (n = 2 and m = 1).

orientation, relative volume, and minimum distance.

C. PET-CT Graph Comparison

We compared graphs representing PET-CT images using
the graph edit distance (Equation 1) with the cost function
for an edit operation o = 〈X,Y 〉 given by:

c (o) =



∞ if mdt (X) 6= mdt (Y )[
N∑
i

(yi)
p

] 1
p

if Y = ∅[
N∑
i

(xi)
p

] 1
p

if X = ∅[
N∑
i

(xi − yi)
p

] 1
p

otherwise

(3)

where X and Y are both vertices or both edges, xi and yi
are the i-th features indexed on X and Y , p is the order
of the equation, and mdt (·) is a function that returns the
modality of a graph element. When X and Y are vertices
from different modalities a cost of ∞ is assigned to prevent
substitutions between tumour and organ vertices. A value of
∅ for X or Y meant that the operation was an insertion
or deletion of graph elements. In our experiments, we used
a value of p = 2 (to make the final case the Euclidean
distance).

D. Vector Space Embedding using Graph Fragments

We define a n-m-fragment of a graph G as a subgraph of
G with n vertices and m edges. We began our embedding
procedure by first decomposing every graph G into its
fragments. Enumerating all fragments for all possible values
of n and m is computationally complex. We therefore set
n = 2 and m = 1. Under this formulation, the number of
fragments for any graph was linear to the number of edges
in the graph and in the worst case (where G was a complete
graph) could be generated in O(N2) time, where N was
the number of vertices in G. Figure 2 shows an example of
a graph being decomposed into fragments with n = 2 and
m = 1.

We then applied Targetsphere Prototype Selection
(TPS) [10] to generate the prototypes from the combined
fragment sets of all the graphs. TPS chose the center-most
graph (determined from Equation 1 and calculated in a
pairwise manner over all fragments) as the first prototype
and then iteratively added as new prototypes the graphs
that had the maximal distance from all of the currently
selected prototypes. This allowed us to generate a prototype
set P = {P1, P2, . . . , Pk} such that P1, . . . , Pk were all
fragments of the same size. These fragments were evenly

distributed across the dataset and were maximally distinct
from one another (represented different ROI features and
contextual relationships).

E. Image Comparison using Vector Space Embeddings

Let Q and S be two graphs of PET-CT images. Without
loss of generality we can assume that Q is the query graph
and S is the graph of any image in the dataset. Since the
embedded vectors could be thought of as points in a multi-
dimensional space, we compared images by calculating the
distance between these points. Similar images lay closer
together in this space (lower distance value) while dissimilar
images were separated (high distance value). We calculated
this distance using a modified Euclidean distance function:

d (Q,S) =
1√
k

√√√√ k∑
i=1

[Dg (Q,Pi)−Dg (S, Pi)]
2 (4)

where k is the number of prototypes in P . The scaling by
1/
√
k ensures that d (Q,S) is bounded by the graph edit

distance Dg (Q,S) (as explained by Bunke and Riesen [9]).

IV. EVALUATION

A. Experimental Procedure

We implemented our method using MATLAB 7.11. The
experiments were run on a PC with an Intel i5 processor at
2.67 GHz with 4 GB of RAM, and running Windows 7 64-
bit. We used a leave-one-out cross validation approach. We
calculated the precision (the proportion of retrieved images
that were relevant), the recall (the proportion of all relevant
images in the database that were actually retrieved), the mean
retrieval time, and the speedup (improvement in retrieval
time) of our method and compared these parameters to the
vector space embedding of (non-fragment) graphs [11] and
to the graph edit distance.

The ground truth for our experiments was derived from
the image diagnostic reports in the dataset (see Section III-
A). The tumour locations and nodal involvement that were
included in the reports were used as image labels.

We repeated our experiments for several different values
of k (the number of prototype fragments). We determined
empirically that k = 20 gave the best retrieval outcomes.

B. Results

Figure 3 shows the precision and recall of our method
compared to the baseline methods. Our method achieved
similar levels of precision to the baseline methods at all
levels of recall. Table I summarises the precision and Table II
summaries the speed of our approach compared to the
baseline methods. Both Tables show the significance of our
results (p value) calculated using the Student’s t-test.

C. Discussion

Our results show that our method achieved comparable
precision to the baseline methods but with a significantly
superior retrieval speed (p < 0.05). Our method was exe-
cuted in less than 30 seconds compared to the graph edit
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Fig. 3. Precision and recall averaged over all queries.

TABLE I
PEAK AVERAGE PRECISION (PAP) AND MEAN AVERAGE PRECISION

(MAP)

Method PAP (%) MAP (%) p

graph edit distance 70.00 52.43 —
TPS embedding 68.00 51.50 0.8157

our method 61.00 47.41 0.2058

TABLE II
MEAN RETRIEVAL TIME (MRT) AND SPEEDUP

Method MRT (s) Speedup p

graph edit distance 22724.77 — —
TPS embedding 502.43 45 0.0440

our method 28.01 811 0.0397

distance, which had an average execution time of several
hours. Our method was also faster than TPS embeddings of
non-fragment graphs, which was executed in ≈9 minutes on
average. This speedup means that our method performs in
near real-time without a large reduction in accuracy.

The explanation for the vastly faster retrieval time relates
to using fragments as the prototypes. Fragment prototypes of
a fixed small size mean that computing Dg(Q,Pi) for a query
graph Q and any Pi ∈ P takes much less time compared
to using any arbitrary graph as the prototype. A small
fragment graph means that the size of Ω is reduced during
the computation of the graph edit distance (Equation 1). In
our method the only determinant of the size of Ω was the
number of vertices in Q. It can be shown that given our fixed
fragment size Dg(Q,Pi) can be computed in O

(
N2
)

time
for any Pi ∈ P , where N is the number of vertices in Q.

Our method maintained comparable precision to the base-
line methods (p > 0.05); the lower precision value is
expected since methods that approximate the graph edit
distance introduce a tradeoff between speed and accuracy.
Our comparable precision is due to TPS selecting uniformly
distributed prototypes. As such, each prototype represented a
subgraph with unique properties (vertex and edge features).

This ensured that each component of the vector was a
unique descriptor for the properties of the graph that it
was embedding. Furthermore, defining our vector space
embedding in terms of the graph edit distance from a set of
prototypes ensured that the vector descriptor considered the
unique features of each modality and the spatial contextual
relationships between the ROIs (as encoded by the structure
of the graphs).

V. CONCLUSION AND FUTURE WORK

We have proposed a graph-based method for PET-CT
image retrieval that embeds graph descriptors into a vec-
tor space defined by fixed-size subgraphs (fragments). Our
experiments showed significantly better retrieval speed (p <
0.05) with comparable levels of precision. Fragments, when
used as the basis of the vector space, enabled a more efficient
embedding process and resulted in faster image retrieval.
For future work we will investigate ways of boosting the
accuracy using vector space techniques for feature selection
and optimisation.
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