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Abstract— Polysomnography (PSG) is the gold standard that
manually quantifies the apnea-hypopnea index (AHI) to assess
the severity of sleep apnea syndrome (SAS). This study presents
an algorithm that automatically estimates the AHI value using
a disposable HealthPatch”™™ sensor. Volunteers (n=53, AHI:
0.1—85.8) participated in an overnight PSG study with patch
sensors attached to their chest at three specified locations and
data were wirelessly acquired. Features were computed for 150-
second epochs of patch sensor data using analyses of heart
rate variability, respiratory signals, posture and movements.
Linear Support Vector Machine classifier was trained to detect
the presence/absence of apnea/hypopnea events for each epoch.
The number of epochs identified with events was subsequently
mapped to AHI values using quadratic regression analysis. The
classifier and regression models were optimized to minimize
the mean-square error of AHI based on leave-one-out cross-
validation. Comparison of predicted and reference AHI values
resulted in linear correlation coefficients of 0.87, 0.88 and 0.92
for the three locations, respectively. The predicted AHI values
were subsequently used to classify the control-to-mild apnea
group (AHI<15) and moderate-to-severe apnea (AHI>15) with
an accuracy (95% confidence intervals) of 89.4% (77.4—95.4%),
85.0% (70.9—92.9%), and 82.9% (67.3—91.9%) for the three lo-
cations, respectively. Overnight physiological monitoring using
a wireless patch sensor provides an accurate estimate of AHI.

Index Terms— Apnea-Hypopnea Index, Heart rate variabil-
ity, Actigraphy, Respiration, Machine Learning.

I. INTRODUCTION

Sleep apnea syndrome (SAS) is a chronic sleep disorder
highly prevalent worldwide. SAS disorder affects health and
quality of life, and also leads to serious health consequences
such as cardiovascular disease, neurocognitive dysfunction,
and respiratory failure. Overnight polysomnography (PSG) is
the gold standard that quantifies the apnea-hypopnea index
(AHI) to assess the severity of SAS disorder. However,
overnight PSG performed in a sleep laboratory involves
many challenges for SAS screening. The laboratory-testing
environment might significantly affect normal sleep patterns
and may cause more apnea’hypopnea events in some patients
as compared to their home environments. The patients might
also be more apprehensive and suffer from sleeplessness due
to the first night effect [1]. Furthermore, the PSG may not be
suitable for SAS screening due to its high operating costs,
requirement of dedicated facilities, equipment and personnel,
inadequate availability, and limited repeatability.

Home sleep tests using portable monitors have been gain-
ing attention for screening of moderate-to-severe sleep apnea.
However, failure rates for home testing are significantly high,
leading to inconclusive studies with no interpretable data [2].
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Reasons for such failures include the complex sensor attach-
ments, obtrusiveness, compliance issues (such as failure to
turn on the monitor), and detachment of sensors during tosses
and turns. The costs of home sleep tests vary greatly with
inconsistent coding, billing, and coverage [3]. The patient is
required to return the monitor to the clinician’s office either
by drop-off or mail after the home sleep test. Additionally,
a waiting period of at least couple of weeks after the sleep
test is commonly required to obtain the results, since the
algorithms on PSG and home-based monitors predict AHI
based on the laborious sleep physician’s visual analysis of
events using oxygen saturation and airflow signals.

Given the limitations of currently available tools, we
present a novel SAS screening tool that estimates the
AHI value automatically by epoch-by-epoch analysis of the
HealthPatch” ™, a disposable wireless patch biosensor.

II. MATERIALS AND METHODS
A. Study Group

The study population consists of 53 volunteers of healthy
and untreated SAS patients (29 males and 24 females)
with age range of 22—73 years. The inclusion criterion to
participate in the study was the age limit of >18 years. The
exclusion criteria included surgical treatment for SAS and
major behavioral and neurological disorders. The AHI had a
range of 0.1—85.8 among these subjects.

B. Polysomnography System

The Sapphire 22-channel PSG system (CleveMed, Inc.,
Cleveland, OH, USA) was used to collect the standard PSG
data. Sleep physicians performed sleep scorings in accor-
dance with American Academy of Sleep Medicine (AASM)
guidelines. Hypopneas were identified as >50% reduction
in airflow lasting for >10 s with a 3% desaturation or an
arousal. Apneas were identified as the absence of airflow
(>90% of baseline) for >10 s. Apnea-hypopnea index (AHI)
is calculated as the average number of apnea/hypopnea
events per hour to quantify the SAS severity.

C. HealthPatch™ Sensor

The HealthPatch”™ sensor is a disposable adhesive patch
biosensor worn on the chest that incorporates two sur-
face electrodes with hydrogel on the bottom, a battery,
an electronic module with the embedded processor, micro-
electromechanical system (MEMS) tri-axial accelerometer
and Bluetooth Low Energy (BLE) transceiver. The patch
sensor facilitates continuous monitoring of ECG and actig-
raphy signals at a sampling rate of 125 Hz and 62.5

1897



®

Fig. 1: The disposable HealthPatch” sensors are attached
to three recommended chest locations for the overnight sleep
study. However, the user will attach only one sensor at one
of the three locations for regular use.

Hz, respectively. The firmware algorithms on the electronic
module process the raw waveforms and transmit a stream
of processed physiological variables via the BLE link as
encrypted data to a relay such as a smartphone, where the live
streams of data can be viewed and stored. More details about
the patch sensor’s physiological monitoring capabilities and
its clinical validation can be found in [4].

D. Sleep Study Protocol

An institutional review board (IRB) committee approved
the protocol of an attended overnight PSG study with patch
sensors. The subjects provided informed consent and specific
information including height, weight, age, gender, and neck
circumference, and filled out standard sleep questionnaires.
A registered PSG technologist hooked up the PSG sensors
and adhered three patch sensors to the subject’s chest at
specified locations and orientations as shown in Fig. 1. The
standard procedures for an attended overnight PSG study
were followed and PSG data were collected. Each wireless
patch sensor was paired with a smart phone and patch
data were simultaneously acquired. PSG and patch data
extracted between the lights-out and lights-on time period
were analyzed offline for development of the AHI prediction
algorithm.

E. AHI Prediction algorithm

The AHI prediction algorithm includes six major blocks:
1. Sensor streams, 2. Preprocessing, 3. Feature extraction, 4.
Classification module, 5. Regression module, and 6. Display.
The details of each block of the algorithm are as follows.

1. Sensor Streams: Heart rate variability (HRV), QRS
wave amplitude (RWA), and QRS wave area (RA) were
the sensor streams derived from ECG signal. The sensor
streams derived from tri-axial acceleration signals included
the MEMS-based respiration signal (RESP ;g rs) [4], signal
magnitude area (SMA) as an activity metric, and polar
angles of posture. The body impedance value was also
measured between the two electrodes. ECG derived signals
were recorded on a beat-to-beat basis. SMA, posture angles

and body impedance signals were sampled every 4 seconds.
RESPj;Ears signal was uniformly sampled at 4 Hz.

2. Preprocessing: The preprocessing of sensor streams
involved elimination of patch off instances using body
impedance, and removal of posture induced low frequency
trend artifacts using a moving average filter with N beats,
where N=3 xuser’s average beats per minute. Further, outliers
of sensor streams were identified and eliminated, if they
lie outside the range mean + 3xstandard deviation of the
overnight signals. The respiratory signals were normalized to
unit variance with reference to a 3-minute moving window.
The preprocessed overnight sensor streams were transformed
into nonoverlapping epochs of 150 s window. The expert’s
event-annotations were mapped to epoch-annotations with
reference to the duration of apnea/hypopnea events on a
given epoch. A threshold of >5 s duration was chosen that
effectively mapped the shortest events to epoch labels.

3. Feature Extraction: Features were computed based
on the epochs of preprocessed sensor streams using time-
domain, frequency-domain, and nonlinear techniques. The
time-domain features were obtained for the series of HRV,
RWA, RA, RESPy/ers, and SMA that included median,
standard deviation, coefficient of variation, mean absolute
deviation, kurtosis, interquartile range, dispersion metric
as the difference between 90th and 10th percentiles, and
approximate entropy. The beat-to-beat HRV data were fur-
ther analyzed to obtain the root mean square and standard
deviation of the successive differences of NN intervals and
percentage of successive NN intervals differ by 50 ms and
nonlinear Poincare plot features.

The frequency-domain features were extracted from the
uniformly sampled (4 Hz) series of HRV, RWA, RA,
and RESPj/ras. A power spectral density estimate was
obtained using Welch’s averaged, modified periodogram
method with 50% overlap and Hamming windows. Following
are the computed frequency-domain features: total, very low
frequency (VLF), low frequency (LF), and high frequency
(HF) band powers and their normalized values, LF/HF ratio,
spectral kurtosis, spectral entropy, and peak-to-mean ratio.
The accelerometer data were used to obtain the posture
related features: the mean overnight posture, mean posture
polar angles, and the number of overnight posture transitions.
All the above physiological features and patient information
were combined to form the feature vector (F7,) that was input
to the epoch classification stage.

4. Classification Module: Linear Support vector machines
(SVM) have been one of the very popular machine learn-
ing classifiers due to their flexibility, computational effi-
ciency, and capacity to handle high dimensional data [5].
In the current settings, a linear SVM classifier model was
trained to classify each epoch with absence/presence of
apnea/hypopnea events using the feature vector F), and the
reference epoch class labels y;e{—1,1}. The trained binary
classifier model was later used to predict the epochs with
apnea/hypopnea events for a given feature vector of a test
data set. The number of epochs with events per hour (EPH)
was calculated based on the predicted labels. EPH value can

1898



100

80

60

AHlpsg

401

20

0 5 10 15 20 25

100

AHIPred

0 20 40 60 80 100
PSG
Fig. 2: Quadratic regression model trained with epochs with
events per hour (EPH) and apnea-hypopnea index (AHI) of
PSG data (top); Comparison of the predicted vs. reference
AHI values shows high linear correlation (bottom).

be obtained by the equation,

P 3600

EPH =758 % Wi

where, P is the number of positive epochs, N is the number
of negative epochs, and WL is the epoch window length.

5. Regression Module: The EPH values are subsequently

mapped to AHI values using regression analysis. The rela-

tionship between the EPH values and AHI values is found

to be nonlinear because the EPH value reaches a plateau as

a function of AHI value based on the epoch window length.

Therefore, a second order regression model is trained for

fitting the relationship between EPH and AHI values as,

y = Boz® + Prx + fBo 2

where, x is the EPH value, y is the nonnegative AHI
value, (s is the quadratic effect parameter, 51 is the linear
effect parameter, and the intercept Sy is set to be zero. The
reference EPHpgs and AHIpgq values of training data set
were used to obtain the quadratic regression model using
least squares estimation as shown in Fig. 2 (top). Based on
the trained regression model, the predicted EPH value was
mapped to a predicted AHI value. The optimization process
of the classifier and regression models is described below.
Optimization process of AHI prediction: The classifier and
regression models were optimized to minimize the mean
square error (MSE) of AHI prediction with reference to

)

AHI pg based on leave-one-out cross-validation (LOOCYV).
The optimization process involved identification of the opti-
mal penalty factor (C) for the linear SVM classifier model
that can accurately predict the epoch’s binary classes, and
minimize the MSE of the predicted AHI. For each value
of a predefined C array, the EPHp, .4 values were obtained
from linear SVM classifier, applied to the trained quadratic
regression model, and AHI values were predicted for (L+1)
LOOCYV cycles, where L is the number of training subjects.
The MSE of predicted AHI was computed with respect to
the AHIpgqg values and stored in an array of same size of
C. The MSE values were similarly obtained for all the other
C values using LOOCV. The optimal penalty parameter for
linear SVM classifier was found to be the one that offered the
least MSE error of AHI. Such optimization process ensures
to provide highest performance and improved generalization
capabilities.

6. Display: The implementation of the AHI prediction
algorithm on the sensor/smartphone can compute the AHI
value by the end of sleep test and display it on the smart-
phone application screen. Based on the predicted AHI value,
the user can be categorized into either control or subgroups
of apnea as per AASM. The results of the apnea screening
can be notified to the patient and the physician’s office.

F. Data Analysis

The nonparametric Kruskal-Wallis test with Dunn’s mul-
tiple comparison tests were performed to investigate signif-
icant differences (P<0.05) with patient specific information
among the control, mild apnea, and moderate-to-severe apnea
groups. The patch sensor data collected simultaneously on
each of the three chest locations were found to have unique
morphology and characteristics of raw and derived signals.
Hence, three independent classifier models combined with
regression analysis were trained and optimized separately to
produce accurate prediction of AHI with respect to each
patch location. In the current study, the predicted AHI
values were used to classify the subjects as moderate-to-
severe apnea (AHI>15) vs. control-to-mild apnea (AHI<15).
The algorithmic performance of sleep apnea screening was
evaluated by comparing the predicted subject labels with
the reference lables based on AHIpgs. The performance
measures included specificity, sensitivity, and accuracy with
their 95% confidence intervals.

III. RESULTS

Table 1 shows the patient specific information among the
control, mild apnea and moderate-to-severe apnea groups.
The gender ratio among three groups indicated a higher
prevalence of apnea in males than females. The patient infor-
mation such as height, weight, age, BMI, and neck circumfer-
ence values were progressively increased from control group
to moderate-to-severe apnea group. The Kruskal—Wallis test
indicated significant differences (P<0.05) in these patient
specific measures among three groups. Thus, the patient
specific features are highly valuable for AHI prediction.
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TABLE I: Patient information among control, mild apnea, and
moderate-to-severe apnea groups.

Info. Control Mild Mod.-severe | P value
AHI<S (5<AHI<15) (AHI>15)
Subjects 21 17 15 N/A
Gender(M/F) 6/15 10/7 13/2 N/A
Height(cm) | 167.84+1.9 174.5+2.6 178.14+1.9* <0.01
Weight(kg) 67.44+2.4 80.2+4.5 97.8+7.1% <0.001
Age 36.74+2.4 41.34+3.4 51.3+3.8%* <0.05
BMI 24.04+0.9 26.3£1.3 30.7£2.0%* <0.01
NeckCirc(cm) 36.5+0.6 38.2+0.9 43.6£1.4*t | <0.001
AHI 2.84+0.3 8.84+0.8% 44.3+5.7* | <0.001

* and I denote P<0.05 compared to the control group. { denote
P<0.05 compared to the mild apnea group.

TABLE II: Algorithmic performance for the classification
of (AHI<15) and (AHI>15) based on the predicted AHI.

Accuracy %
89.4 (774, 95.4)

85.0 (70.9, 92.9)
82.9 (67.3, 91.9)

Location | Specificity% |
1 | 93.9 (83.3, 98.0)
2 | 92.9 (80.6, 97.6)
3 | 84.6 (69.4, 93.1)

Sensitivity% |
78.6 (64.9, 87.9)

66.7 (51.2, 79.2)
77.8 (61.7, 88.4)

The values in parentheses indicate the lower and upper bound of
95% confidence intervals.

The predicted AHI values demonstrated high correlation
with the reference AHIpgg values. Fig. 2 (bottom) shows a
strong correlation of 0.87 between the AHIp,..q and AHlpsq
values for the patch pool of location 1. The linear correlation
coefficients for patch locations 2 and 3 were found to
be 0.88 and 0.92, respectively. The predicted AHI values
were subsequently used to classify the control-to-mild apnea
group (AHI<15) vs. the clinically significant moderate-to-
severe apnea group (AHI>15) with an accuracy of 89.4%,
85.0%, and 82.9% for the three locations, respectively. The
algorithmic performance including specificity, sensitivity and
accuracy with 95% confidence intervals (Table 2) showed
no significant differences among the three chest locations.
Hence, the patch sensors can be used at any of the three
locations for accurate AHI estimation and effective SAS
screening.

IV. DISCUSSION

Overnight physiological monitoring with an adhesive
HealthPatch”™ sensor provides an accurate estimate of AHI
values compared to the gold-standard of PSG.

Wristwatch, wristband, and bracelet commercial devices
offer sleep-awake patterns primarily based on actigraphy
signals, but most of these devices do not appear to have the
functionality of AHI quantification or sleep apnea screening
[6]. A wrist worn commercial device Watch-PAT200 that
derives AHI value using blood oxygen saturation, heart
rate, and actigraphy signals has shown a correlation of 0.87
as compared to PSG’s AHI, and demonstrated 0.93/0.73
as the specificity/sensitivity for the detection of SAS with
AHI threshold of 15 in 30 adults [7]. The RUSleeping
RTC, a single-channel portable device that measures air-
flow has reported the specificity/sensitivity of 0.83/0.70 to
screen SAS subjects with AHI>15 in 34 adults [1]. The

performance of the current algorithm of AHI prediction
using ECG and actigraphy signals alone and without blood
oxygen saturation/airflow signals is highly comparable to the
aforementioned studies.

Overnight PSG is not suitable for mass screening of
sleep apnea due to many challenges. Furthermore, determin-
ing AHI values using PSG is generally not an automated
process. It requires manual identification of start and end
time periods for each event by visual analysis of oxygen
saturation and airflow signals. In contrast, the patch sensor
is disposable, inexpensive, unobtrusive, simple to attach and
easy to connect/pair wirelessly with the user’s smartphone.
The encrypted data is transmitted via a BLE link to the
smartphone and stored there overnight. After the overnight
recording, the recorded data can be automatically analyzed
on the smartphone processor, and the results can be displayed
on the application screen. From the smartphone, the analysis
report can be easily sent to a physician or a family member.
The user can wear the sensor for multiple nights in a row.
This biosensor solution is novel and can be easily used
for widespread sleep apnea screening. Given the current
obesity epidemic and high prevalence of Type-2 diabetes,
the proposed automated sleep apnea screening system can
be obtained from primary care practitioner offices, diabetic
clinics, or by a physician’s referral.

In conclusion, SAS screening using HealthPatch”* sensor
could provide a convenient and inexpensive wireless solution
for continuous multi-night sleep apnea assessment that can
increase the confidence in the predicted AHI value and the
overall SAS screening outcome.
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