
  

 

Abstract— There is approximately a 6-8 hour window that 
exists from when a hypoxic-ischemic insult occurs, in utero, 
before significant irreversible brain injury occurs in new born 
infants. The focus of our work is to determine through the 
electroencephalogram (EEG) if such a hypoxic-ischemic insult 
has occurred such that neuro-protective treatment can be 
sought within this period. At present, there are no defined 
biomarkers in the EEG that are currently being used to help 
classify if a hypoxic ischemia insult has occurred. However, 
micro-scale transients in the form of spikes, sharps and slow 
waves exists that could provide precursory information 
whether a hypoxic-ischemic insult has occurred or not. In our 
previous studies we have successfully automatically identified 
spikes with high sensitivity and selectivity in the conventional 
64Hz sampled EEG.     

This paper details the significant advantage that can be 
obtained in using high frequency 1024Hz sampled EEG for 
sharp wave detection over the typically employed 64Hz 
sampled EEG. This advantage is amplified when a combination 
of wavelet Type-2 Fuzzy Logic System (WT-Type-2-FLS) 
classifiers are used to identify the sharp wave transients. 

By applying WT-Type-2-FLS to the 1024Hz EEG record and 
to the same down-sampled 64Hz EEG record we demonstrate, 
how the sharp wave transients detection increases significantly  
for high resolution 1024Hz EEG over 64Hz EEG. The WT-
Type-2-FLS algorithm performance was assessed over 3 
standardised time periods within the first 8 hours, post 
occlusion of a fetal sheep, in utero.   

1024Hz EEG results demonstrate the algorithm detected 
sharps with overall performance rates of 85%, 92%, and 87% 
in the Early/Mid and Late-latent phases of injury, respectively 
as compared to 25%, 55% and 31% in the 64Hz EEG. These 
results demonstrate the power of Wavelet Type-2 Fuzzy Logic 
System at detecting sharp waves in 1024Hz EEG and suggest 
that there should be a movement toward recording high 
frequency EEG for analysis of hypoxic ischemic micro-scale 
transients that does not occur at present. 
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I. INTRODUCTION 

    A major cause of brain injury in preterm infants is due to 
hypoxia-ischemia [1]. This is caused when the brain 
becomes starved of oxygen which can occur during a 
difficult delivery in child birth, resulting in Cerebral palsy 
and major handicap [2, 3]. It has been shown in the fetal 
sheep model of hypoxic-ischemia that the 
electroencephalogram (EEG) [2, 3] exhibits a 6-8 hours post 
insult period, known as the ‘latent phase’ after which 
epileptiform activity [2, 4] of high amplitude appears 
(shown in, Figure 1B). There are three distinct regions that 
are delimited in the latent phase period. These are known as 
the Early-latent, Mid-latent, and Late-latent phases which 
follow each other chronologically in the whole latent phase 
period. A very successful neuro-protective hypothermia 
treatment has been developed by world leaders in our team, 
Gunn et.al [5], that inhibits the epileptiform activity that 
leads Cerebral palsy and major handicap in newborns. 
However, such a treatment must be administered before the 
end of the late-latent phase to avoid brain-injury occurring.  
One of the main issues that exists at present, is that there are 
no defined biomarkers in the EEG that are currently being 
used to help classify if a hypoxic-ischemic insult has 
occurred [6]. However, micro-scale transients with very 
similar profiles in the form of spikes, sharps and slow waves 
[4, 7] exists that could provide precursory information 
whether a hypoxic-ischemic insult has occurred or not. 
Hence, an automated recognition scheme of such embedded 
transients in the latent phase may prove beneficial in the 
identification of hypoxia-ischemia [4-6].  
Time-frequency techniques such as the short-time Fourier 
(STFT) and Haar wavelet transform have provided some 
initial success in the detection of spike transients [4, 6-10] in 
the 64Hz sampled EEG. The Wavelet Transform (WT) 
method is a flexible time-frequency multi-resolution method 
for decomposing a signal into different frequency scales 
which has been employed for edge-detection in the EEG    
[4, 8, 9].  
In Type-1 and Type-2 Fuzzy logic systems (FLS), a rule-
base is derived from fuzzy set theory [10, 11] and have been 
employed for biomedical classification, epileptic seizure 
detection, and spike sorting problems as well [13-18]. In a 
FLS, human knowledge is imparted via logic rules [10] to 
the classifier where Type-2 FLS are mostly utilized in order 
to find a solution for nonlinear problems [11]. 
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Figure 1.  The Latent phase of injury after hypoxic insult (A, B)                            
A sample 7 sec section of the original 1024 Hz signal and the              

down-sampled 64 Hz EEGs in this phase (C, D) 

 

A fusion method of wavelet pre-processing combined with 
Artificial Neural Networks (ANNs) has been shown to 
improve the performance of prediction in the EEG spike 
detection [19] over application of ANNs performed 
separately. Such combinational approaches help to separate 

transients into a several series of wavelet-scales enabling 
ANNs to identify important details more easily than in the 
raw EEG time-series. 
This work details the significant advantage that can be 
obtained in using high frequency 1024Hz sampled EEG for 
sharp wave detection over the typically employed 64Hz 
sampled EEG when a combination of Mexican hat wavelet 
Type-2 Fuzzy Logic System (WT-Type-2-FLS) classifiers 
are used to identify the sharp wave transients.  
Firstly, the Wavelet Transform (WT) decomposes the 
normalized and de-meaned high frequency signal into 
multiple scales. Secondly, the general features of the signals 
are extracted in higher scales. Then, an expert interval Type-
2 Fuzzy system is used to differentiate the sharp waves from 
the rest of the transients. The obtained results confirm the 
superiority of employing high frequency EEG recordings for 
the sharp detection in comparison with using the 
conventional low resolution sampled data (Figure 2). 
 

II. METHODS 

A. Data acquisition 

    The fetal sheep EEG data sets used were approved by the 
Animal Ethics Committee of The University of Auckland. A 
sheep model was used as a maturation of a human brain at 
27-30 weeks of gestation coincides with a sheep gestation of 
103 days. Fetal asphyxia is applied by obstruction of the 
umbilical cord for 25 minutes as reported in [4]. Under the 
afore-mentioned conditions, 8 hours post-asphyxia of the 
fetal EEG has been recorded and digitized at a sampling 
frequency rate of 1024 Hz, described in [4]. EEG 
instrumentation and hardware limitations in the in utero 
environment restricted us to examine up to 1024 Hz. The 
1024 Hz data was then down-sampled to 64Hz to provide a 
second lower resolution dataset to test the hypothesis of 
improved prediction performance at high resolution 
sampling rates (Figure 1). All the sharp wave transients 
among the Early, Mid, and Late latent phase from the left 
EEG channel recordings were initially identified manually 
by an expert. (i.e. a sharp wave having an amplitude >20 μV 
and duration 70-250 ms). In this study, sharp wave detection 
was carried out on three 10 min durations of: 1) the Early-
latent phase; 2) the Mid-latent phase, and 3) the Late-latent 
(Figure 1), after; 0.75 hour (h), 3.0 h and 6.3 h respectively.  
 
B. Mexican hat wavelet decomposition 
    The Continues Wavelet Transform (CWT) employs 
localized basis functions, over Fourier Transform methods, 
to pick out localized frequency features that exist within a 
time-domain signal and decomposes the initial signal to 
several time-series of different wavelet-scales (m) in the 
wavelet-domain.  
 

A sample CWT of a signal	ݏሺݐሻ  is shown below: 
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Here ߮ሺݐሻ represents the mother wavelet, “*” denotes  
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Figure 2.  Suggested method for sharp wave detection  

complex conjugate, and ܽ, ܾ are the dilation and translation 
factors of the mother wavelet. In this work, a Mexican hat 
wavelet was employed as it was found that its profile 
provided good correlation when applied to the sharp-wave 
transients. It was found that a Mexican hat wavelet scale of 
32 provided a good identification of the sharp-wave 
transients at 1024 Hz when used in conjunction with the 
Type 2- FLS (Figure 4, 5). 
 
C. Feature extraction 
    Using the Mexican hat wavelet scale 32 coefficients we 
then proceeded to extract the following features that would 
be fed into the Type 2-FLS as the input Membership 
Functions (MF) parameters of the system. The features used 
are described below: 
 

1- Amplitude of the local Maxima and Minima. 
2- Amplitude difference of all local extrema 
3- Wave duration. 
4- Slope before and after local extrema. 

 
D. Fuzzy Inference System 
    The idea of a Fuzzy Logic System (FLS) is to design a 
flexible architecture which models human reasoning about 
the problem at hand. A FLS embeds the knowledge of an 
expert in the field into Membership Functions (MFs). 
Typically, a FLS is structured on a set of primary IF-THEN 
logical rules. In such a system, each rule maps multiple 
inputs from input MFs to one or more outputs on output 
MFs. Defining a Footprint of Uncertainty (FOU) in an  

 
Figure 3.  A sample defined Type-2 MF and the FOU 

interval Type-2 fuzzy enables one to handle the uncertainties 
of a nonlinear problem (Figure 3). A simple structure of a 
Type-2 fuzzy Multi Input Single Output (MISO) rule could 
be represented as: 
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Here, ݔ, ܣ ଵ are the membership values andݖ
, ܣ
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are the upper and lower Type-2 input/output MFs [12]. The 
features of the extracted scale 32 wavelet from section (II.C) 
were used as the inputs of the Type-2 Fuzzy system. After 
de-fuzzification, the output of the Type-2 Fuzzy would 
identify the potential detection of a sharp-wave. 
  

III. RESULTS 

    The results from both the 1024Hz sampled and the 64Hz 
sampled hypoxic-ischemic EEG datasets were then assessed. 
The performance of the WT-Type-2-FLS was evaluated 
using the sensitivity, selectivity and overall performance 
measure [4] described in equations (3-5) respectively.  
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Where, a: true positive (TP) occurs when a detection was 
both identified by the algorithm and an expert, correctly; a 
false positive (FP) occurred when a correct detection 
occurred by the algorithm and not by an expert and a false 
negative (FN) occurred when a spike was identified by an 
expert and not by the algorithm. 
In this study, the expert identified 33, 5, and 35 sharp waves 
manually in the early, mid and late latent phases, 
respectively.  
 

TABLE I 
Algorithm Performance – Early‐latent phase 

Signal sampling rate Sensitivity 
(%) 

Selectivity 
(%) 

Overall 
Performance (%) 

64 Hz   33.33  22.00  27.67 

1024 Hz  90.91  78.95  84.93 
 

TABLE II 
Algorithm Performance – Mid‐latent phase 

Signal sampling rate 
Sensitivity  

(%) 
Selectivity 

(%) 
Overall 

Performance (%) 

64 Hz   60.00  50.00  55.00 

1024 Hz  100.00  83.33  91.67 
 

TABLE III 
Algorithm Performance – Late‐latent phase 

Signal sampling rate 
Sensitivity 

(%) 
Selectivity 

 (%) 
Overall 

Performance (%) 

64 Hz   27.78  33.33  30.56 

1024 Hz  96.97  76.19  86.58 
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Figure 4.  1024 Hz sampled EEG from left channel and the corresponding 

Mexican hat wavelet coefficients in scale 32 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  64 Hz sampled EEG from left channel and the corresponding 
Mexican hat wavelet coefficients in scale 32 

Table I-III, show the performance of the (WT-Type-2-FLS) 
algorithm for sharp detection for the two different sampling 
rates of 1024 Hz and 64 Hz. It was found that the proposed 
WT-Type-2-FLS method detected sharps in 1024 Hz signal 
with the overall performance of 84.93%, 91.67%, and 
86.58% in the Early, Mid, and Late latent phases, 
respectively. In contrast, the sharp detection for the lower 
resolution sampling rate of 64Hz was 27.67%, 55% and 
30.56% for the Early, Mid, and Late latent phases, 
respectively. 
 

IV. CONCLUSION 

This paper details the significant advantage to be had in 
the detection of sharp-waves using the WT-Type-2-FLS 
method on recorded hypoxic-ischemic EEG signals at high 
sampling rates 1024 Hz signal as opposed to the 
conventional 64Hz sampling rates used in clinical study.  

The WT-Type-2-FLS algorithm performance was 
assessed over 3 standardised time periods within the first 8 

hours, post occlusion of a fetal sheep, in utero. 1024Hz EEG 
results demonstrate the algorithm detected sharps with 
overall performance rates of 85%, 92%, and 87% in the 
Early/Mid and Late-latent phases of injury, respectively as 
compared to 25%, 55% and 31% in the 64Hz EEG. These 
results demonstrate the power of Wavelet Type-2 Fuzzy 
Logic System at detecting sharp waves over noise and 
distinguishing sharp waves from epileptiform activity in 
1024Hz EEG, accurately and suggest that there should be a 
movement toward recording high frequency EEG for 
analysis of hypoxic ischemic micro-scale transients that does 
not occur at present. 
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