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Abstract— Fetal cardiac assessment techniques are aimed to
identify fetuses at risk of intrauterine compromise or death.
Evaluation of the electromechanical coupling as a fundamental
part of the fetal heart physiology, provides valuable information
about the fetal wellbeing during pregnancy. It is based on the
opening and closing time of the cardiac valves and the onset
of the QRS complex of the fetal electrocardiogram (fECG).
The focus of this paper is on the automated identification
of the fetal cardiac valve opening and closing from Doppler
Ultrasound signal and fECG as a reference. To this aim a
novel combination of Emprical Mode Decomposition (EMD)
and multi-dimensional Hidden Markov Models (MD-HMM)
was employed which provided beat-to-beat estimation of cardiac
valve event timings with improved precision (82.9%) compared
to the one dimensional HMM (77.4%) and hybrid HMM-
Suppeort Vector Machine (SVM) (79.8%) approaches.

I. INTRODUCTION

Fetal cardiac assessment techniques are used during preg-
nancy to identify fetuses at risk of intrauterine compromise
or death. Fetal heart rate monitoring is usually performed as
Non-Stress Test (NST), which is useful but not enough for
a conclusive fetal cardiac assessment [1].
Electromechanical coupling is one of the most significant
part of the heart physiology [2] and can be evaluated using
sensitive indices based on the opening and closing time of the
cardiac valves and the onset of the fetal electrocardiogram
(fECG) QRS complex. For example Pre-ejection Period
(PEP) is the interval from Q wave of the fECG to the
Aorta opening time and is reported as a sensitive indicator of
the function state of the fetal myocardium. It also becomes
prolonged early in development of hypoxemia and acidosis
[3]. Other indices are found from the opening or closing of
the valves and have other clinical applications [4].
Fetal cardiac valve motion timings can be obtained from
fetal echocardiography. However it is an expensive and
highly specialized technique which is performed for high
risk pregnancies [5]. A simpler and less specialized method
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is to use Doppler Ultrasound (DUS) signal. Signal processing
is required to obtain a component of the signal that is
linked to the valve motions [6], [7]. fECG is also used as a
reference to find the valve motion events and calculate the
electromechanical coupling indices.
Although several studies proposed to use filtering to find
the component representing the valve motions [6], [8], an
analysis by Short Time Fourier Transform (STFT) uncovered
the variability of the content of the DUS signal on a beat-
to-beat basis and the wide changes in the signal content
and spectral characteristics [7]. Therefore it was proposed to
use Wavelet analysis [9] or Empirical Mode Decomposition
(EMD) [10], [11] for decomposing the DUS signal to the
component corresponding to valve motions.
Another challenge in identification of the fetal cardiac valve
motions is to automate this task. In earlier studies [6]–[9],
[12], [13], an expert identified the opening and closing of
the valves manually from the peaks of the DUS component.
Manual identification process requires special skills and is
time consuming and subject to inter and intra observer
errors. Therefore an automated technique was proposed in
our previous paper, using Hidden Markov Models (HMM)
to find the cardiac valve opening and closing as hidden states,
from the peak timings of the DUS signal component as
observation [10]. HMM only takes one observation symbol
at each time, which was the peak timings in [10], while
other features such as the amplitude of the peaks can also be
used for identification. To incorporate additional features, the
hybrid Support Vector Machines (SVM)-HMM was proposed
to recognize the events [11]. However combining SVM with
HMM made it more complicated, by additional processes
such as: nonlinear transformation with Kernel, solving an
optimization (dual) problem, repetition of procedure for
multiclass SVM and estimating the probabilistic output.
The focus of this paper is to improve the precision of the
automated identification of fetal cardiac valve movement by
incorporating additional features using Multi-Dimensional
HMM (MD-HMM) which is less complex than hybrid SVM-
HMM.

II. METHODS
A. Data

The Doppler ultrasound and abdominal ECG signals were
recorded simultaneously from 61 pregnant women with
normal single pregnancy and the gestational age of 16 to
41 (33±6) weeks, at the Tohoku University Hospital. All
recorded signals were 1 minute in length and sampled at
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1 kHz with 16-bit resolution. The study protocol was ap-
proved by Tohoku University Institutional Review Board and
written informed consent was obtained from all participants.
Ultrasonic Transducer 5700 (fetal monitor 116, Corometrics
Medical Systems Inc.) with 1.15 MHz signal was used to
collect the continuous DUS.
Data were divided into training and testing sets. Training set
was obtained from 345 cardiac cycles of DUS components
and fECG from 21 fetuses. The cardiac valve motion events
of the training set were identified manually based on exper-
tise. Data from the remaining subjects were used for test set.
M-mode and pulsed wave Doppler fetal echocardiography
were performed simultaneous with DUS and fECG for two
test subjects to verify the mitral and aortic valve timings.
Convex 3.5 Hz of HITACHI ultrasound scanner (Ultrasonic
diagnostic instrument Model EUB-525; HITACHI health
medical corporation) was used for this purpose.

B. fECG extraction

Abdominal recordings were bipolarly recorded from the
electrodes placed on the maternal abdomen in 12 channels,
sampled at 1 kHz with 16-bit resolution and filtered by
bandpass filter (1-100 Hz).
fECG was separated from the abdominal mixture, by cancel-
ing the maternal ECG and separating by the Blind Source
Separation with Reference (BSSR) as described in our earlier
study [14]. The R-peaks of the fECG were automatically
detected by applying a lower threshold (e.g. 5× mean of
the fECG over 10 second intervals) and the derivative of the
signal.

C. DUS signal decomposition by Empirical Mode Decom-
position

Empirical Mode Decomposition (EMD) is a single channel
method for decomposing a complicated signal into a set of
different oscillatory modes [15]. The decomposed compo-
nents are called Intrinsic-Mode Functions (IMF) and are zero
mean, orthogonal and spectrally independent. For each mode,
the highest frequency component is locally extracted out of
the input signal. It was proposed in our previous studies to
apply EMD to the DUS signal to acquire the component
linked to the cardiac valve motions [10], [11].
By applying EMD to the DUS signal, as shown in [10], [11],
the first IMF corresponding to valve motions was obtained.
The envelope of its absolute value was taken by interpolating
its maxima and smoothing by low pass filter. The peaks
of the envelope provided the features for identification of
the opening and closing of the valves. The envelope was
segmented into cardiac cycles using R-R intervals of the
simultaneous fECG and then normalized.

D. Identification of valve timing events by multi-dimensional
HMM

Considering the synchronous operation of both sides of the
fetal heart, the semilunar and atrioventricular valve motions
are expressed as the aorta and mitral valve movements
respectively throughout the paper.

The valve timings can be automatically identified from the
peaks of the envelope of the first IMF using HMM, as
described in our previous paper [10]. The timings of the
observed peaks of the first IMF envelope were used as
observations to find the hidden states: Mitral closing (Mc),
transition 1 (TR1), Aorta opening (Ao), transition 2 (TR2),
Aorta closing (Ac), transition 3 (TR3), Mitral opening (Mo),
transition 4 (TR4).
The identification process was performed in training and
decoding phases. In the training phase, the probability of
emissions and transition between states were estimated. Each
element ij of the transition matrix was found by dividing the
number of times the event sj followed si in the training set
by the total number of si in that set. Each element bi(t) of
the emission matrix was calculated from the number of times
an observation was linked with the state si in the training
set, divided by the total number of si. Viterbi algorithm was
used for decoding the observation set and finding the most
probable sequence of states linked to the peaks of the IMF
envelope.
Using one dimensional HMM, the valve motion events are
identified using the transition of the states and peak timings
only. In this paper it is proposed to use multi-dimensional
HMM which was developed for telerobotic applications [16],
[17], in order to add new features to the observation, such
as the amplitude of the peaks to improve identification.
To add a new dimension, an additional set of emission
probabilities was estimated in the training phase which was
the probability of observing a peak amplitude given a hidden
state at that peak time. The peak amplitudes were quantized
and scaled to be mapped into a range of integers from 1 to
200. The emission probability can be expressed as follows:

bi,d(od(t)) = P (od(t)|s = i) (1)

where i is the state number, o indicates the observation
sequence in discrete time t, which has two dimensions,
the timing (d = 1) and amplitude (d = 2) of the peaks.
Since the training set was not rich enough to estimate the
emission probability for every time bin and amplitude value,
the estimated emission matrices contained some zeros and
isolated spikes. Therefore the estimated emission matrix was
filtered by a low pass filter and then normalized.
The amplitude and timing of the peaks given each state were
independent as verified by Hilbert-Schmidt Independence
Criterion (HSIC) test with a Gamma approximation and the
median distance as kernel size (type I error upper bound
was < 0.17 for Mc, < 0.03 for Ao and < 0.01 for other
states) [18]. Therefore the probability density function of the
observation, specific to each state (e.g. state i) was modified
as follows and used in Viterbi algorithm.

Bi(O(t)) =

n∏
d=1

bi,d(od(t)) (2)

where n indicates the dimension of the observation which
is 2 in this application. More details about the multi-
dimensional viterbi algorithm can be found in [16].
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E. Cross-validation

The MD-HMM approach was compared to one dimen-
sional HMM and hybrid SVM-HMM, using 10-fold cross
validation. The training set was randomly partitioned into
10 subsets with almost equal size; one subset for validation
and 9 subsets for training. The whole process was repeated
10 times while each of the 10 subsets was used once for
validation.
The precision of the identification of each valve timing event
was calculated as follows and averaged over the 10 folds:

Precisioni =
ti

ti +
∑

j fij
(3)

where i and j refer to the valve motion events (Mo, Mc, Ao
or Ac), ti is the number of true estimation of the event i and
fij indicates the number of times event j was mistakenly
identified as event i.

III. RESULTS

The precision of identifying valve motion events was
obtained from 10-fold cross-validation of the training set
including 345 cardiac cycles of DUS signal and fECG from
21 fetuses. The new MD-HMM method, one dimensional
HMM approach [10] and hybrid SVM-HMM [11] were
compared in table I which shows the improved precision of
the new method.
The new method was applied to two test data (not involved

TABLE I
PRECISION (%) OF IDENTIFICATION OF VALVE MOTION EVENTS BY

CROSS VALIDATION OF DIFFERENT METHODS APPLIED TO THE TRAINING

SET INCLUDING 345 CARDIAC CYCLE RECORDINGS FROM 21 FETUSES.

Methods Mc Ao Ac Mo Average
MD-HMM 91.5 89.1 81.5 69.4 82.9

HMM 90.8 88.1 71.2 59.4 77.4
SVM-HMM 90.8 90.6 77.9 60.0 79.8

in training) for one of which, the simultaneous M-mode
image of the aortic valve motion and for the other one
the pulsed wave Doppler image from mitral was collected.
Figure 1 and 2 show the m-mode and pulsed wave Doppler
images which verify the identification of the aorta and mitral
valve motions respectively. As shown in figure 2, the last
Mc event did not appear nor was it identified from the DUS
signal. However Mc was identified for 95.1% of all cardiac
cycles combined from 61 subjects. The rate of identified

TABLE II
MEAN ± SE OF CARDIAC INTERVALS AND THE RATE OF IDENTIFIED

EVENTS FOR 61 FETUSES.

Intervals Mean ± SE rate* (%)
R-R 420.9 ± 34.1 100

R-Mc 26.5 ± 2.9 95.1
R-Ao 64.1 ± 3.7 98.8
R-Ac 220.7 ± 4.7 99.9
R-Mo 297.1 ± 7.4 99.9

* The rate is calculated from the number of identified
cardiac valve events out of 8510 beats from 61 fetuses.
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Fig. 1. (a) The M-mode image of the aortic valve operation. The aorta
opening (Ao) and closing (Ac) events are depicted by dashed lines. (b)
The envelope of the first IMF and the events identified by the MD-HMM
method. (c) Simultaneously recorded fECG.

events across 61 subjects (8510 cardiac cycles) from training
and testing sets, the mean and standard error (SE) of the
average interval of fECG R-wave to each valve motion are
summarized in table II.

IV. DISCUSSION

In this study a new automated method was proposed to
identify the beat-to-beat fetal cardiac valve timings with
improved precision. Similar to the previous methods, EMD
was used to extract the component linked to the valve
motions [10], [11]. The shortcoming of the (one dimensional)
HMM is that it only takes one observation symbol at each
time [10]. By extending it to the multi-dimensional HMM,
multiple features can be used for identification. By adding the
peak amplitude feature, the average precision was improved
from 77.4% to 82.9%. Other parameters such as the width
of the peaks can also be used in future studies.
Another method to incorporate multiple features for this
application is the hybrid SVM-HMM which was proposed
in our previous study [11]. The precision of the MD-HMM
was slightly higher than the hybrid SVM-HMM method.
Furthermore, the MD-HMM method is simpler than the
hybrid method. The procedures added to HMM for SVM-
HMM include: nonlinear transformation with Kernel, solving
an optimization problem (dual problem [19]), repetition of
procedure in the one-against-all scheme for multiclass SVM
and fitting sigmoid (Platt’s method) to obtain a probabilistic
output. While for MD-HMM training, an extra estimation of
the emission matrix is added for each extra dimension which
is simply calculated from the number of times an observation
is to linked each state, divided by the total number of that
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Fig. 2. (a) Pulsed wave Doppler image of fetal mitral valve movements.
Dashed lines show mitral opening (Mo) and closing (Mc), (b) The envelope
of the first IMF and the valve motion events identified by the proposed
method, (c) Simultaneously recorded fECG.

state. For decoding, the emission probabilities are multiplied
under the condition of their independence, to obtain the
probability density function of the observation for each state
required in Viterbi algorithm. Overall, the process of MD-
HMM is less complex than the SVM-HMM specially for
low dimension, but detailed comparison of their complexity
requires further study.
Mitral closing event had the lowest identification rate (table
II) and also did not appear in the last beat shown in figure 2.
Mitral closes when the pressure of the left ventricle exceeds
the left atrial pressure, which is followed by opening of
aorta. A reason for lower identification rate of Mc is that
time difference between Mc and Ao is very short and in
some cases their corresponding peaks of IMF cannot be
distinguished.

V. CONCLUSIONS

In this study a new method was proposed for automated
identification of fetal cardiac valve motions using a combina-
tion of EMD and multi-dimensional HMM. Employing MD-
HMM enabled the use of amplitude of the peaks of the first
IMF as well as their timings, which improved the precision
of the identification of cardiac valve motion. The average
precision obtained by the MD-HMM was 82.9%, which
was higher than one dimensional HMM (77.4%) and hybrid
SVM-HMM (79.8%). More than 95.1% of valve motion
timing events were identified using this method and they
were also verified by M-mode and pulsed Doppler images
for two fetuses.
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