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Abstract— Automatic sleep staging on an online basis has
recently emerged as a research topic motivated by fundamental
sleep research. The aim of this paper is to find optimal signal
processing methods and machine learning algorithms to achieve
online sleep staging on the basis of a single EEG signal. The
classification performance obtained using six different EEG
signals and various signal processing feature sets is compared
using the kappa statistic which has very recently become
popular in sleep staging research. A variable duration of the
EEG segment (or epoch) to decide on the sleep stage is also
analyzed. Spectral-domain, time-domain, linear, and nonlinear
features are compared in terms of performance and two types
of machine learning approaches (random forests and support
vector machines) are assessed. We have determined that frontal
EEG signals, with spectral linear features, epoch durations
between 18 and 30 seconds, and a random forest classifier lead
to optimal classification performance while ensuring real-time
online operation.

I. INTRODUCTION

Sleep is a state of reversible disconnection from the
environment characterized by quiescence and reduced vig-
ilance. Although the precise function of sleep remains to
be elucidated, it appears that sleep primarily benefits the
brain. Recent research evidence indicates that modulating
brain activity patterns during sleep via sensory, magnetic,
or electric stimuli at specific sleep stages can be beneficial
in a wide range of contexts including memory consolidation
[8] and relief from depression [9]. To verify the validity of
such interventions in practice requires automated means for
online sleep staging.

In conventional sleep staging, experts examine
polysomnography (PSG) signals which include
electroencephalogram (EEG), electro-oculogram (EOG),
and electro-myogram (EMG) to decide on sleep stages on
the basis of 30-second long segments (epochs). Automated
sleep staging algorithms have been primarily developed
with the goal of assisting sleep technicians in the manual
analysis of sleep recordings in an off-line mode. In this
paper we focus on achieving online automatic sleep staging
on the basis of a single EEG signal (or channel). For this
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purpose we consider several alternatives for: a) the single
EEG signal (i.e. the electrodes location), b) the signal
processing algorithms to extract features that characterize
the sleep stages, and c) machine learning methods: random
forests and support vector machines.

This paper is organized as follows. Section II summarizes
the background information and state-of-the-art. Section III
describes this paper dataset and methods. The results are
presented in Section IV. Section V concludes the paper.

II. BACKGROUND

Two distinct types of sleep occur in humans: rapid eye
movement (REM) sleep, and non-REM (NREM) sleep. Com-
pared to the low voltage, high frequency patterns appearing
in the awake EEG, NREM sleep is associated with a syn-
chronized EEG pattern. NREM is subdivided into stages N1,
N2, and N3. During REM, the EEG exhibits a pattern similar
to that observed during wakefulness [10]. There are several
ways in which the overnight EEG can be modeled to find
the patterns of different sleep stages. In [4] three families
of features are described, being the frequency, temporal and
non-linear domain features.

Frequency models describe global trends for the EEG
power during sleep in the classical frequency bands: delta,
(δ: 0.5-4 Hz), theta (θ: 4-8 Hz), alpha (α: 8-12 Hz), sigma
(σ: 11-15 Hz), and beta (β: 15-30 Hz). As sleep deepens
the power in the delta and theta bands increase whereas the
power in the alpha, sigma, and beta bands follow a quasi-
opposite trend. The K-complex band is also popular (K:
0.9-1.1 Hz) and reflects K-complex activity in NREM sleep.
The EEG power spectrum density for different sleep stages
(including wake) is represented in Fig. 1.

Temporal models assume that the EEG is generated by
a generally unknown stochastic process and examine the
statistical features of the process over time.

Non-linear models describe the EEG as a non-linear
dynamical system. Non-linear EEG features describe the
dynamics of the systems [11] (e.g. fractal dimension or
entropy). While most non-linear features require phase-space
reconstruction, a high-complexity operation, some methods
exist that by-pass it and therefore are feasible in real-time
applications.

A. Automated sleep staging using the EEG

Table I shows a summary of results for published research
on automatic sleep annotation based on 30 second long
epochs. The results are given in Cohen’s kappa as it is a
metric which is not affected by class imbalance such as
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TABLE I
SUMMARY OF RESULTS FOR AUTOMATED SLEEP STAGING METHODS FOR WHICH κ IS REPORTED.

Signal type Feature type Classification method # of subjects κ Reference
2 EOG Spectral correlation Rule-based 265 0.63 [1]
6 EEG, 2 EOG, EMG α, spindle, Slow wave sleep ratio Rule-based 20 0.79 [2]
Single EEG α, β, θ, δ, spindle, K-complex Random forest 16 0.76 [3]
Single EEG Spectral and non-linear features SVM ensemble 28 0.86 [4]
ECG Power Spectrum Density; heart-beat variability Hidden Markov model 18 0.43 [5]
Single EEG Power Spectrum Density Vector Quantization 12 0.64 [6]
Single EEG Power in δ, θ, α, σ, and β (RMS values) Gaussian Mixture Model 10 0.63 [7]

Fig. 1. Normalized Welch power spectrum density for Wake, NREM, and
REM stges.
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with sleep staging. It determines the agreement between
annotators while factoring out chance agreement [7]. Kappa
values up to 0.2 represent slight agreement while kappa up
to 0.4, 0.6, 0.8 and 1 respectively represent fair, moderate,
substantial and perfect agreement [12]. Table I shows that
single EEG methods can perform just as well as full PSG
methods but require more complex feature extraction and
classification algorithms. The best performing classification
algorithms are the support vector machine ensemble and the
random forest.

III. METHODS

The data from 1 night of ten healthy subjects (five female;
age 21.9 ± 0.5 yrs) who participated in a previous study [13]
was used in this paper. From this dataset, all the 30-second
long epochs of the six bipolar EEG signals (F3-A2, F4-
A1, C3-A2, C4-A1, O1-A2, and O1-A2) and the manually
annotated hypnogram done by an expert (AASM rules, [10])
are used. The data was band-pass filtered in the frequency
band from 0.6 to 27 Hz. The filtered data was down-sampled
from 1024 Hz to 64 Hz. Epochs with excessively large-
amplitude segments were removed as they are likely to
correspond to artifacts.

A. Feature extraction

Per epoch, 34 features (frequency, time and non-linear
types) were extracted (see Table II). Most features are taken
from [4] where the origin and equations of each feature are
given.

TABLE II
SUMMARY OF EXTRACTED FEATURES

Feature Symbol
Frequency-domain
Absolute spectral powers δa, θa, αa, σa, βa, Ka

Band power sum δ + θ
Relative spectral powers δr , θr , αr , σr , βr , Kr

Power ratios δ/α, β/δ, θ/α and β/α
Spectral edges SEF90, SEF95, SC
Spectral peak sp
Spectral moments sm(1), sm(2), sm(3), sm(4)
Spectral entropy Hs

Time-domain
The Hjorth parameters act, mob, com
Zero-crossing rate Zc

75th percentile 75P
Nonlinear
Mutual information entropy Hmi

Higuchi’s fractal dimension HD
Lempel-Ziv Complexity LC

1) Frequency domain features: Frequency-based features
were derived from the Welch [14] estimate of the power
spectrum density function (PSD).

Band powers Absolute spectral band powers were ex-
tracted as the integral of the PSD for these bands. These are
noted as δa, θa, αa, σa,, βa and Ka. Furthermore the band-
power sum δ + θ was included as an indication of low fre-
quency activity. Relative features of frequency (δr, θr, αr, σr,
βr and Kr) were also obtained by dividing the absolute
power in a band by the total spectral power. Finally, ratios
between different band powers were obtained: δ/α, β/δ,
θ/α, and β/α. It was shown that such ratios strongly
correlate with sleep stages [7].

Spectral edge as the frequency for which the power
obtained by integrating the PSD from 0 to that frequency
is equal to a given fraction r of the total power. The spectral
edge frequencies SEF90 (r = 0.9), SEF95 (r = 0.95) and
the spectral centroid SC (r = 0.5) were obtained.

Spectral peak (sp) is defined as the frequency at which
the PSD is the highest. This feature is used in [15], [4]. This
is written as sp.

Spectral moments of different orders m = 1 to m = 4
were estimated according to the equations in [16]. These
features quantify high frequency momentum.

Spectral entropy (Hs) characterizes the non-uniformity
of the PSD. It is equal to the negative value of the sum of
spectral powers multiplied by their natural logarithms over
all frequency bins.
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2) Time domain features: To extract these features,
the EEG is considered as a time series with samples
{x[1], ..., x[|x|]} where |x| is the total number of data points.
µx is the average of the data points, and stdx the standard
deviation.

The Hjorth parameters are three classifical time features
of the EEG. The activity (act) is defined as the standard
deviation of the epoch. Mobility (mob) is the squared ratio
of the activity of the derivative of the epoch to the activity
of the epoch. Complexity (com) is the ratio of the mobility
of the derivative of the epoch to the epoch itself.

The zero-crossing rate (Zc) counts the number of cross-
ings around the mean within a 3-second long moving aver-
age. This quantity is used in [4].

The 75th percentile (75P) is the amplitude value that is
larger or equal than 25% of the samples in the epoch. This
percentile was used in [4] for sleep staging.

3) Non-linear features: Similarly to the time-domain fea-
tures, an epoch is considered as a time series.

The mutual information entropy quantifies the unpre-
dictability of the time series. This quantity is referred to
as Hmi and is calculated as the negative of the sum of all
points in the time series multiplied by their relative chance
of occuring in the series (i.e. their a-priori probabilities).

The Higuchi fractal dimension [17] (HD) is a fast
approximation of the fractal dimension, a powerful feature
for seperating deep sleep [4]. The detailed equations to derive
HD are described in [18].

The Lempel-Ziv complexity [4] (LC) provides a measure
of complexity in the signal which can be calculated by
setting a power threshold and counting each crossing of the
threshold after a sub-sequence of consecutive values below
or above the threshold. The optimized threshold [4] for sleep
stage classification is 1.24 ∗ µx.

B. Classification methods
Both the random forests (RF) [19] and the support vector

machine (SVM) ensemble [4] were considered as classifi-
cation algorithms. The Weka software [20] implementation
of these algorithms was used. The RF decides on the sleep
stage based on a weighted vote of ten decision trees with
randomized inputs. The number of features to be used in
random selection is log(#F )+1 where #F is the number of
total features being used for classification. These parameters
are suggested in [3]. The second classifier, the SVM, is
in principle a binary classifier. To cope with multiclass
problems such as in sleep staging, ensembles of SVM’s are
employed with a voting strategy. There are two widely-used
ensemble layouts being the one-versus-all (1vA) and one-
versus-one (1v1) voting layouts [4] and they will both be
tested here. Each SVM is trained using a polynomial kernel
(with parameter set to 1). The soft margin parameter was
set to 1, the epsilon parameter to 10−12, and the tolerance
parameter to 0.001.

C. Evaluation methods
The following procedure is applied to determine the fea-

ture subset, channel, epoch duration, and algorithm that leads

TABLE III
TOP-10 FEATURES OVER ALL CHANNELS SELECTED USING THE

RELIEFF [21] FEATURE EVALUATOR.

Rank Feature Count Rank Feature Count
1 δr 6 6 θ/α 5
2 θr 6 7 Hmi 5
3 Zc 6 8 σr 4
4 SEF95 6 9 LC 4
5 Kr 5 10 SEF90 4

to the best classification performance.
1) Feature ranking. All the features are first ranked

according to their predictive power per channel. The
ReliefF attribute evaluation method [21] is used.

2) Channel, feature and epoch duration comparison.
The leave-one-subject-out cross-validation (L1SOCV)
method (consisting in training with the data of all the
subjects but one and testing on the remaining subject)
is applied using an SVM 1vA ensemble for different:
(a) channels, (b) subsets of top features, and (c) epoch
durations to determine the combination that leads to
the maximum performance.

3) Algorithm selection. Finally the different algorithms
are tested using the best channel and feature subset to
select the optimal classification algorithm. The classi-
fication performance is compared in terms of kappa.

IV. RESULTS AND DISCUSSION

A. Feature ranking

As described in Section III-C, the ReliefF [21] feature
ranking method was applied on all the data for each channel
in a 10-fold cross-validation manner and rankings were
averaged over each fold. Table III reports the top ten most
occurring features over all channels, with the count indicating
the number of channels in which they occur.

The high ranking of the δ, θ and Kr reveal the importance
of the lower frequencies in sleep staging. The fact that
relative band powers were chosen over absolute features of
band power provides evidence that the PSD’s total amplitude
is specific to the context (e.g. subject or cycle) and sim-
ple normalization will improve performance. Other strong
spectral predictors are the σr and θ/α features. The σ band
reflects spindle activity and therefore can distinguish N2
from the other NREM stages. The θ/α ratio is powerful
because it contrasts high frequency against low frequency.
The SEF95 and SEF90 features are also strong features from
the spectral domain.

As for the non-linear features, the mutual information
entropy and Lempel-Ziv complexity features rank high
in Table III yet they appear less important than linear
features. The zero-crossing rate, while similar to Lempel-
Ziv complexity, is ranked higher than it. This hints towards
the validity of the moving average model which is assumed
by the zero-crossing rate (but not by the Lempel-Ziv
method). The zero-crossing rate was originally applied for
the detection of spindles [22] and therefore serves as a
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Fig. 2. Classification performance characterized by the kappa statistic for
each epoch duration, EEG signal, and three feature sets (top-10, top-20, and
the whole set).
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similar function as the σ band.

B. EEG signal and feature selection

In an L1SOCV manner the κ performance was obtained
for varying numbers of top features for each of the 6 EEG
signals and for a variety of epoch lengths. The results are
visualized in Figure 2.

As expected, larger epoch size and a higher amount
of features always increase the performance. For practical
purposes and taking into account that real-time operation is
sought, the top-20 features can be used since adding more
features only results in marginal increases. Frontal channels
F3 and F4 lead to the best κ when compared to central (C3,
C4) and occipital (O1, O2) channels. Signals originating at
right sites (F4 and C4) have slightly better kappa values
than their left counterparts (F3 and C3 respectively). This
lateralization trend is not present on occipital channels. The
F4-A1 signal has the best results.

Table IV lists the top-20 features for F4-A1. These features
can be efficiently estimated in real-time. Most of these
features result from linear spectral analysis of the signal.
For the F4-A1 signal and the top-20 features a drop in
kappa (difference = 0.17) occurs when 6-second long epochs
(kappa=0.44; moderate agreement) are considered instead of
30-second long epochs (kappa=0.61; substantial agreement).
Using 12 (kappa=0.53) or 18 (kappa=0.57) second long
epochs can however ensure real-time operation with quasi-
substantial agreement with professionally annotated data. In
the context of this paper in which real-time sleep staging is
considered for the purposes of applying an external inter-
vention to influence sleep, it is assumed that being able to
determine the sleep stage on the basis of shorter epochs is
preferable for the timely intervention. This type of assump-
tion applies in the memory consolidation enhancement cases
considered in [8], [23].

TABLE IV
TOP 20 FEATURES FOR THE F4-A1 CHANNEL.

Rank Feature Rank Feature Rank Feature
1 θ/α 8 SEF95 15 mob
2 Kr 9 σa 16 βr
3 δr 10 LC 17 αr

4 θr 11 θa 18 δa
5 Hmi 12 SEF90 19 θa
6 σr 13 HD 20 SC
7 C 14 Ka

TABLE V
CLASS-BY-CLASS PRECISION AND RECALL, ACCURACY AND COHEN’S

KAPPA PER ALGORITHM.

SVM 1vA SVM 1v1 RF

Pr
ec

is
io

n W 0.86 0.75 0.78
REM 0.56 0.58 0.69
N1 na1 0.18 0.52
N2 0.86 0.85 0.85
N3 0.32 0.82 0.83

R
ec

al
l

W 0.51 0.71 0.73
REM 0.55 0.79 0.70
N1 0.00 0.00 0.31
N2 0.83 0.88 0.91
N3 0.70 0.70 0.73

Accuracy 0.69 0.77 0.80
Cohen’s κ 0.49 ±0.06 0.61 ±0.06 0.66 ±0.15

C. Classification algorithms

The classification algorithms from Section III-B were
applied on the data from the signal (F4-A1) and its top 20
features. For each algorithm, the kappa statistic and accuracy
were obtained from an L1SOCV procedure. In addition, sleep
stage specific precision and recall values were estimated. All
statistics are reported in table V.

The RF classifier has the highest average kappa but also
the largest variance across subjects. The one-versus-all SVM
ensemble led to the lowest performance. The SVM 1v1
ensemble performs better than the 1vA. Yet, this SVM
approach did not perform well for the transitional N1 sleep
stage.

The RF works by modeling decision rules and therefore
resembles the AASM methodology of sleep staging. Yet
it is more prone to overfitting than the statistical SVM
and therefore will perform very well on ”average” subjects
while outliers will not work well. Limiting the tree depth
might lower the standard deviation of the performance. The
SVM approaches seem to cope poorly with the N1 sleep
stage. Using more sophisticated kernel functions such as
the Gaussian radial basis function may increase the SVM
performance.

Yet, all 3 algorithms perform reasonably well given the
very limited amount of data used. The studies shown in table
I all use much bigger data sets. A future step is to test the
selected classification algorithm with a larger data-set.

V. CONCLUSIONS

In this paper, the focus was on developing an automated
sleep staging online algorithm using a single EEG signal.
We have compared the classification performance in terms
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of the kappa statistic for six EEG signal candidates, 5
epoch durations, and different types of signal features (time
and frequency domain; linear and non-linear). In addition,
we have also considered two of the best machine learning
algorithms foudn in literature (support vector machine and
random forest).

We have found that the EEG signals leading to the best
classification performance are the ones corresponding to
frontal channels. While the performance increases with the
epoch duration a good compromise was found with an epoch
duration of 18 seconds which can ensure online operation
with a reasonable performance (kappa=0.57 quasi-substantial
agreement with a professionally annotated hypnogram).

We have found that spectral linear features lead to higher
performance than temporal and nonlinear features. Using
relative frequency band powers (which are obtained by
dividing by the total power or the power in another band)
lead to higher performance than absolute ones. This is due
to the within-subject normalization effect that is introduced
by the ratio calculation.

The random forest had the highest performance (average
kappa across subjects=0.66 for 30-second long epochs),
higher than that of the SVM.
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