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Abstract— Wearable monitoring systems have gained tremen-
dous popularity in the health-care industry, opening new
possibilities in diagnostic routines and medical treatments.
Numerous hardware systems have been presented since, which
allow for continuous acquisition of various biosignals like the
ECG, PPG, EMG or EEG and which are suited for ambulatory
settings. Unfortunately, these flexible systems are liable to
motion artifacts and especially photoplethysmographic signals
are seriously distorted when the patient is not at rest. A lot of
work has been done to reduce artifacts and noise, ranging from
simple filtering methods to very complex statistical approaches.
With regard to the PPG, certain quality indices have been
proposed to evaluate the signal conditions. As movements are
the primary source of signal disturbances, the relation between
the output of a signal quality estimator and acceleration
data captured directly on the PPG sensor is focused in this
work. It will be shown that typical motions can be detected
on-line, thereby providing additional information which will
significantly improve signal quality assessments.

I. INTRODUCTION

Pulseoximeters have become an indispensable part of
routine medical applications and various devices have been
developed in the past that are either based on reflective or
transmissive measurement principles in order to capture
the photoplethysmographic waveform [1] [2]. Clinicians
primarily apply pulseoximeters to non-invasively observe
the oxygen saturation especially during anesthesia or
post-operative treatments. Further, the photoplethysmogram
(PPG) has been used to extract other vital parameters like
pulse-rate and heart-rate variability [3], respirational activity
[4], pulse transit times and blood-pressure indications
[5]. It was also shown that a careful morphological
analysis of the pulse wave can reveal vascular diseases [6]
or provide information about arterial elasticity and aging [7].

Due to its easy applicability, PPG sensors are generally
suited for long time measurements in home monitoring
scenarios. However, PPG signals acquired in such ambula-
tory settings are often distorted by motion artifacts which
seriously hamper the above mentioned analysis procedures
[2] [8]. Many contributions that focus on artifact reduction
have been presented since, including methods based on
adaptive noise cancellators [9] [10] [11], filter banks [12],
Fourier analysis [13], Kalman filters [14], wavelets [15]
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[16], smoothed Wigner-Ville distribution [17], singular value
decomposition [18] or independent component analysis [19]
[20].

Next to artifact reduction, automatic quality assessments
also play an important role when it comes to succeeding
signal analysis and tasks like feature extraction. Based on
expert-labeled reference data Sukor et. al have developed a
three stage classification process to automatically detect poor
pulse quality in the PPG [21]. Li and Clifford suggest to
apply dynamic time warping to calculate features out of the
PPG which are then evaluated by a neural network to classify
the quality of the PPG [22]. Yet some other approaches resort
to statistical evaluation of the PPG data to detect motion
artifacts [23] [24].

As the majority of signal distortions in the PPG are
caused by different kinds of motions of the subject’s extrem-
ities, raw acceleration data might enhance the capabilities
of signal quality estimation. In [25], typical movements
which provoke PPG artifacts have been summarized, re-
sulting from an interesting field study that was conducted
in a clinical environment. Since different kinds of motions
lead to different kinds of artifacts, this work focuses on
the automatic classification of different finger, wrist and
general hand motions by evaluating features extracted from
a three channel acceleration sensor that is directly attached
on the PPG fingerprobe. A robust classification of distinct
motions will serve as a valuable indicator with regard to
the expected signal quality and might help to choose a
proper reconstruction approach. For this purpose, a novel
five wavelength PPG acquisition hardware equipped with
an acceleration sensor directly attached on the fingerprobe
has been developed, which is part of a wireless body sensor
network.

Next, the quality estimation algorithms proposed by [21]
and [22] are applied on the data acquired by our system. In
that context, some difficulties regarding these approaches are
discussed which support the notion to incorporate accelera-
tion data in PPG preprocessing tasks.

The paper is organized as follows. In part A of the follow-
ing section the PPG acquisition system is presented whereas
part B concerns itself with the experiments conducted in
this study. An insight of the most important preprocessing
steps with respect to the PPG and ACC raw data is provided
in part C. The result section III presents the classification
performance of typical motions and depicts the outcomes of
the implemented PPG quality estimation procedures. Section
IV summarizes the conclusions and gives a short outlook.
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Fig. 1. Block diagram depicting PPG sensor hardware

II. METHODS

A. Hardware System

In order to simultaneously record PPG and acceleration
data, a new transmissive fingerclip sensor has been
developed. The main performance criteria have been set
to robust data recordings on a mass storage device, high
sampling rates up to 1 kHz, synchronicity among multiple
devices, easy applicability and long battery life that allow
long-time measurements of at least 24 hours. To meet the
above stated requirements, a dual controller architecture
has been assembled, which is depicted in Figure 1. An
MSP430F5659 serves as the main controller (Master) which
controls the analog PPG front-end and runs a FAT filesystem
[26] to store the captured raw data on a micro SD-card.
The controller is equipped with a generous amount of 66
kBytes internal SRAM, which are used for large buffersizes
preventing data lost on sporadic occurring latencies of the
SD-card.

To cope with the important and time crucial tasks of wire-
less timer-synchronization, data transfers and inter sensor
network communication, an MSP430F5438A was chosen as
the second controller (Slave) which operates a Texas Instru-
ments Bluetooth CC2560 module. As this controller does not
have to serve any further tasks, a minimum interrupt latency
for incoming packages can be guaranteed, which is essential
for the accuracy of the implemented time synchronization.

Both controllers run at 16 MHz and are supplied by a
rechargeable 2100mAh lithium-ion battery which is typically
used in modern smart phones.

The PPG finger clip houses a photodiode opposite to five
surface mounted LEDs with wavelengths of 637nm, 660nm,
740nm, 770nm and 880nm. As mentioned in the previous
section, a three channel accelerometer is placed on the PCB
inside the finger clip housing. In the current settings, all
signals are sampled at 500 Hz using the internal 12-Bit
analog/digital converter of the master controller.

B. Experiments

The main objective of this work aims at identifying
typical hand movements by evaluating the corresponding

acceleration signals. Therefore, two PPG sensors based on
the architecture described in the previous subsection are
used in the following experiments. The first finger probe is
attached to the index finger of the right hand which will
perform the experiments whereas the second finger probe
is attached to the index finger of the left hand, which will
be kept at rest to provide an artifact free reference PPG
signal. Moreover, a three lead ECG (Einthoven I, II and III)
is recorded simultaneously.

In order to retain a certain reproducibility, the experiment
protocol is partly based on classes of motions conducted
in other published works [21] [16] [23] [25] and consists
of the following motions: Bump, Disturb finger probe,
Rest, Shake wrist, Tap finger, Horizontal twitch left,
Horizontal twitch right, Horizontal twitch forward,
Horizontal twitch backward, Vertical twitch up, Vertical
twitch down, Horizontal periodic right/left, Horizontal
periodic forward/backward, Horizontal circle, Vertical
periodic up/down, wrist rotate, trembling.

Ten healthy subjects (age from 19 to 44, 7 male, 3 female)
have volunteered to participate in the depicted measurements.
Each of the above listed hand-motion-experiments has been
conducted for 40 seconds followed by 20 seconds remaining
at rest. Out of each 40 seconds experiment period, 25
blocks of 2000 samples have been extracted (blocks overlap
1500 samples). Thus, 250 samples of each experiment are
available.

C. Preprocessing

With regard to the motion detection, only the three
acceleration channels in x-, y- and z-direction are taken into
account. The succeeding feature extraction is performed on
the raw signals, so that no preprocessing takes place. In
total, 52 features in the time domain, frequency domain
as well as statistical properties are calculated out of each
sampleblock. The derived features are then enclosed in
a large dataset which also contains the labeled classes
presented in the previous subsection. Thus, supervised
machine learning methods can be applied to classify the
different types of motions.

In this work, a naive Bayes network as well as a
multi layer perceptron (MLP) have been implemented to
classify the blocks of ACC data according the current hand
motions. Both approaches are well suited for later on-line
prediction, as the computational complexity is relatively low.

As the signal quality directly depends on occurring mo-
tions, the signal quality estimation approaches proposed by
Sukor, Li and Clifford [21] [22] are implemented in order to
associate detected movements with possible changes of the
signals morphology and to explore the performance of both
methods on our data. Sukor argues that good PPG pulses
have similar amplitude, width and morphology to adjacent
pulses and therefore derives a two stage classification process
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on that basis. In this work, the preprocessing of the PPG
signal has been arranged in exactly the same manner, so
that the PPG can be classified into three categories: Good,
Poor or Bad. The first two classes are mapped to SukorGood
whereas the third class will be mapped to SukorBad.

Li and Clifford basically derive features of a single PPG
beat by comparing the pulse to an average beat, incorporating
dynamic time warping. These features are evaluated by a
neural network classifier which assigns the PPG quality class
to either Excellent, Acceptable or Unacceptable. We will
map the first to classes to LiCliffordGood and the last to
LiCliffordBad.

III. RESULTS

A. Motion Classification

The classification of the acceleration data with respect
to different hand motions yielded very promising results.
Applying a stratified 10 fold cross-validation, the naive
Bayes approach classified 93,1 % instances correctly. The
multi layer perceptron was trained using the backpropagation
of error method [27]. In a 10 fold cross-validation 95,6%
of the classes have been predicted correctly. With the help
of a subset size forward selection method, the number of
significant features have been reduced to 22 elements. Thus,
it seems principally possible to detect and to distinguish
between certain hand movements. A closer examination of
the signal quality during the different hand motion states
might provide a valuable information for following signal
processing methods and is discussed in the next subsection.

B. PPG Quality

As described in the previous chapter, the PPG signal
has been automatically classified as either Good or Bad
using the two presented signal quality detection approaches.
Figure 2 gives a visual impression of the outcomes of the
classification processes. Not surprisingly, there are some
discrepancies concerning the output of the two classifiers. It
should be mentioned at this point, that Sukor’s algorithm is
based on heuristically determined thresholds that have to be
adjusted to the individual dataset. If the absolute amplitude
of a detected pulse for example, exceeds the empirically
predetermined threshold, the pulse is immediately classified
as bad quality. Therefore, such an approach depends on sev-
eral environmental factors like the subject’s finger thickness,
position of the finger probe or even tolerances of the built-in
LEDs and photodetector. For that reason, some kind of on-
line adjustments of the given threshold should be considered
to avoid unnecessary false-negative classifications.

Detecting the current state of motion might deliver very
valuable information that can be used for such recali-
bration methods. To get a quantitative idea of the PPG-
Quality/Motion-State relation, a histogram which is gained
by the sum of all datasets is shown in Figure 3. The
histogram plots the number of beats belonging to the corre-
sponding quality class. It should be noted, that the two qual-
ity estimators implement different peak detectors performing
not equally well, which is the reason why the number of

Fig. 2. Classified PPG quality according to LiClifford (top), Sukor (middle)
in combination with predicted hand movements. The colored backgrounds
represent the estimated signal quality (Red: Bad Green: Good). The blocks
of the classified motion are separated by the vertical black lines. The third
plot shows the acceleration signals.
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Fig. 3. Estimated quality classes during different exercises

beats extracted by the two approaches is not equal. Between
each conducted experiment the subjects remained 20 seconds
at rest, which is the reason why there are far more ’rest’
states than other experiments. As expected, there are motion
exercises where the proportions of bad signals predominate.
This information could be used by methods, which require a
PPG free of motion artifacts. Moreover, it can be seen that
there is a relatively great amount of signal portions that have
been classified as bad during the rest state. When inspecting
these candidates, one will note that the morphological shape
is often intact and the downgrade is due to an improper
threshold. One should also keep in mind that the LiClifford
Classifier was trained on records drawn from a completely
different dataset and therefore might malperform on new
unseen data. In that case, the incorporation of the acceleration
based detected motion delivers an important indicator for
plausibility of the quality classifications.

C. Hardware Performance

As two controllers have been incorporated into the system
design, a robust data acquisition flow can be guaranteed.
The master controller spends all its resources without being
disturbed on the sampling of the analog front end, generous
data buffering and succeeding storage on the micro SD-
card. Thus, data lost which typically occur when the system
is interrupted at critical time instances can be avoided.
Simultaneously, the slave controller can immediately handle
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incoming wireless Bluetooth packets, which is essential in
timer synchronization applications. In the current settings, we
are able to record the five channel PPG along with the three
channel ACC signals at sampling rates up to 1 kHz without
lost of packets. In that configuration the whole module draws
approximately 40mA, which allows long-time measurements
up to 48 hours.

IV. CONCLUSION

In the scope of this work, a wireless hardware system
has been developed which is able to record a transmissive
PPG accompanied by local acceleration data. The output
of two Signal Quality Estimators on our data has been
evaluated and some drawbacks were highlighted. Moreover,
it was shown, that typical movements which have been
reported to severely hamper PPG signal acquisition, can
be detected on-line by evaluating the ACC signals. These
information have been proven valuable for tasks like signal
quality estimation and are very promising for further PPG
processing methods, where the state of the current motion
might be of great interest. Methods as proposed by [12] for
example, might significantly profit from our proposed motion
detection, which have to locate artifact free periods in order
to start a recalibration sequence of certain reference signals.
In the next steps, the proposed method could be used to
enhance existing artifact reduction approaches by proper
incorporation of the detected motion information. In this
paper, only the infrared channel has been considered, leaving
out the remaining four wavelength signals, which could
contribute further interesting information.
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