
  

 

Abstract— Fetal Heart Rate (FHR) monitoring represents a 

powerful tool for checking the arousal of pathological fetal 

conditions during pregnancy. This paper proposes a 

multivariate approach for the discrimination of Normal and 

Intra Uterine Growth Restricted (IUGR) fetuses based on a 

small set of parameters computed on the FHR signal. We 

collected FHR recordings in a population of 120 fetuses (60 

normals and 60 IUGRs) at approximately the same gestational 

week through a standard CTG non-stress test.  A set of 8 linear 

and non-linear indices were selected and computed on each 

recording, on the basis of their “stand-alone” discriminative 

properties, demonstrated in previous studies. By using the 

Orange® data mining suite we checked various multivariate 

discrimination models.  The results show that a Logistic 

Regression performed on a limited set of only 4 parameters can 

reach   92.5% accuracy in the correct identification of fetuses, 

with 93% sensitivity and 91.5% specificity. 

I. INTRODUCTION 

The history of Fetal Heart Rate (FHR) analysis has been 
strongly influenced by developments in signal processing 
methods. Since the introduction of Cardiotocography in the 
early ‘70ies, FHR monitoring represents an almost unique 
method to survey the fetal development in a noninvasive and 
quite simple way. Changes in fetal heart beats have been 
observed before any other sign of disease clearly appears, 
thus assuming a growing importance in the diagnostic 
process [1]. 

Starting from the first prototypes of computerized 
Cardiotocography, for a long time, the FHR signal was 
analyzed by classic time domain parameters in order to 
evaluate the variability in short and long time windows and to 
deduce possible pathological or risky conditions for the fetus 
from changes in the FHR variability [2].  Since the end of 
80’s, the introduction of non linear parameters in the analysis 
of biological signal dynamics reinforced even more this 
viewpoint by investigating the geometric and dynamic 
properties of heart rate time series. In fact, some aspects of 
the FHR variability that were never well understood, received 
a new attention thanks to the novel available tools [3].  
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However, for many years, the research in this field has 
been focused to find a single indicator that could be the 
winner in discriminating healthy from pathological fetuses. 
Only recently, developments in the biosignal analysis 
research and application provided a novel view in the FHR 
analysis and in its possible diagnostic use.  Instead of 
searching for single parameters, researchers started to 
understand that the problem was complex and required more 
than one index to be correctly faced.  Experimental results 
demonstrated that many mechanisms were acting in the 
signal control in particular when disease conditions arise [4].  

The multiparametric approach proposed in this 
manuscript is the result of a research work, lasting since the 
beginning of the new millennium, dedicated to extract 
diagnostic information from FHR signals collected during 
pregnancy. The goal is to find a limited set of linear and 
nonlinear parameters that, by combining different methods of 
parametrization of FHR signal, can generate a new 
classification model for the early discrimination of IUGR 
fetuses.   

II. METHODS 

A. Data collection and preprocessing 

FHR signals were collected on a population of 120 
pregnant women at the Azienda Ospedaliera Universitaria 
Federico II, Napoli, Italy, through a Hewlett Packard CTG 
fetal monitor, connected with a PC computer. The set of 
recordings was composed of 60 healthy and 60 IUGR 
fetuses. Both groups were identified after delivery, on the 
basis of Apgar scores, weight and abdominal circumference 
at birth: IUGR fetuses were selected by weight below the 
10th percentile for their gestational age, abdominal 
circumference below the 10th percentile and Apgar score <8.  
The CTG recordings were performed in a controlled clinical 
environment, with the pregnant woman lying on a bed. The 
details of the two populations are reported in Table I.  The 
average length of the recordings was 2742 ± 595 sec for 
healthy subjects and 3412 ± 1023 sec for IUGR fetuses. 

  

TABLE I – SUMMARY OF NORMAL AND IUGR FETUSES 

Population  Healthy IUGR 

Number 60 60 

Mother (ys)  32,34±5,64 29.68±6.21 

Gest. age at CTG (ws) 34.78 ± 0.53 32,27±2,79 

Gest. age at birth (ws) 39,74 ± 1,15 34,15 ± 2,99 

Weight of the baby  3275 g± 518g 1479 g ± 608 g 

Delivery mode 
58%  Spont. 

42% Caesarean 
14,8%  Spont. 

85,2% Caesarean 
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As described in [3] the HP fetal monitors use an 
autocorrelation technique to compare the demodulated 
Doppler signal of a heartbeat with the next one and a peak 
position interpolation algorithm, which allow an effective 
resolution better than 2 ms in the detection of the heart 
period. The HP monitor computes FHR values every 250 
msec and, in the commercially available system, it provides 
the actual FHR in bpm every 2.5 sec as the average of 10 
consecutive values (corresponding to an equivalent sampling 
frequency of 0.4 Hz). In our system we modified the software 
in order to read the FHR at 2 Hz (every 0.5 sec), which 
represents a reasonable compromise to achieve an enough 
large bandwidth (Nyquist Frequency 1 Hz) and an acceptable 
accuracy of the FHR signal.  

B. Linear FHR Parameters 

Classical linear indices are usually computed on the time 
course of the FHR signal by excluding accelerations and 
decelerations as proposed by Arduini et al. [5].  Among these 
classical indices we calculated the Short Term Variability 
(STV), the Long Term Irregularity (LTI), and the covariance 
of FHR signal (RCO).  

STV quantifies FHR variability over a very short time 
scale. We refer to definitions provided by Dalton et al. [6] 
(even if we used a scale factor of 12) and by Arduini et al. 
[5]. By considering one minute of interbeat sequence, we 
define STV as: 

   

where T24(i) is the value of the FHR signal in 
milliseconds, taken each 2.5 sec. STV was computed for each 
minute and the averaged on the whole recording. 

LTI was proposed by De Haan et al. [7]. It is computed 
on a three minute segment of interbeat sequence T(i) in 
milliseconds, by excluding accelerations and decelerations. 
LTI is defined as the interquartile range [¼; ¾] of the 
distribution  m(j) with j belonging to a three minute window, 

  
m j( ) = T j( )

2

+ T j +1( )
2 ; where T(j) is the FHR signal in 

milliseconds. LTI values were then averaged on the whole 
recording. 

C. Non -Linear FHR Parameters 

Various techniques exist aimed at quantifying the degree 
of similarity and/or complexity in time series. Among them 
we considered Approximate Entropy (ApEn), Sample 
Entropy (SampEn), Lempel Ziv Complexity (LZC).  

ApEn [8] and SampEn [9] both quantify regularity and 
complexity of a time series. They evaluate the signal 
regularity, within a tolerance r, by assessing the frequency of 
patterns similar to a pattern of window length m (m=1, 2, r: 
0.1 - 0.25 std of the input data). 

SampEn has been introduced and largely employed in 
biomedical signal processing over time, as it improves the 
estimation performed by ApEn (i.e. removes the bias 
introduced by self-counts). In our experimental data ApEn 
and SampEn were estimated on the FHR time series, on non-
overlapping windows of three minutes, by using the same 
parameter set: m=1 and r=0.1, m=2 and r=0.15 and 0.2. 

Lempel Ziv Complexity (LZC) was introduced in the 
field of Information Theory to measure the number of 
different sub strings and the rate of their recurrence [10].  
Namely, LZC reflects the gradual increase of new patterns 
along a given sequence. The measure of complexity 
introduced by Lempel and Ziv is defined as the minimum 
quantity of information needed to define a binary string. In 
order to estimate the LZC in a time series, it is necessary to 
transform the signal (the FHR in our case) into symbolic 
sequences. We transformed FHR signals through a binary 
and a ternary coding procedures. In the binary coding, given 
a FHR series {xn}, we built the sequence yn by assigning 1 to 
a signal increase (xn+1>xn) and 0 to a decrease (xn+1≤xn). In 
case of ternary alphabet, 1 denotes the signal increase 
(xn+1>xn), 0 the decrease (xn+1<xn) and 2 the signal invariance 
(xn+1=xn). To avoid the possible dependence of the encoded 
string on quantization procedure adopted to record the signal, 
a p factor is introduced representing the minimum 
quantization level for a symbol change in the coded string 
(e.g. yn = 1 if xn+1>xn+xn.p). We considered the encoding 
parameter p = 0, 0.005, 0.01, 0.02. The LZC index was 
computed on 360 point-long FHR windows (3 min). 

In addition to complexity or regularity indices, we 
recently introduced two novel parameters computed on the 
Phase Rectified Signal Average (PRSA) curves, namely the 
Acceleration Phase Rectified Slope (APRS) and the 
Deceleration Phase Rectified Slope (DPRS) [11]. Phase 
Rectified Signal Average (PRSA) was proposed by Bauer et 
al. [12] and allows the detection and quantification of quasi-
periodic oscillations in non-stationary signals affected by 
noise and artifacts, by synchronizing the phase of all periodic 
components to “anchor points”. This method is useful to 
enhance episodes of increasing and/or decreasing FHR, 
which are functionally related to fetal condition. The 
procedure to build up the PRSA curve is described in [12]. 
An interesting feature of a PRSA curve is that a 30-40 
minutes FHR signal can be condensed in a single waveform, 
showing the average dynamic pattern of the recording under 
analysis. For each FHR recording we built two PRSA curves, 
by taking 200 sec windows (400 samples) from the FHR 
signal, which were selected if the right average of the 
window was higher/lower than the left average. Then, the 
windows were synchronized in their anchor points (the 
middle point of the curve) and averaged. In order to 
summarize the behavior of each PRSA curve with one figure 
of merit, we proposed the APRS and DPRS, namely the slope 
of increasing/decreasing PRSA curves in the anchor point.  

TABLE II – SUMMARY OF THE RESULTS FOR THE CHOSEN PARAMETERS 

Parameter 
Healthy  IUGR  t-

test 
p-value 

(mean ± std) (mean ± std) 

Time Domain     

Rcov(0)  (ms2) 349 ±115 175 ±72 *** 2.10 e-16 
STV (ms) 6.7 ± 2.24 4.29 ± 1.62  *** 1,22 e-09 
LTI (ms) 21,46 ± 6.53 17.17 ± 5.37 *** 1.5 e-11 

Regul./Compl.         

ApEn(1,0.1) 1.33 ± 0.13 1.21 ± 0.11 ** 5.14 e-7 
Lempel Ziv (2,0) 1.00±0.08 0.94±0.09 * 0.00078 
SampEn(1,0.1) 1.3±0.19 1.13±0.15 ** 2.08 e-7 

PRSA          

APRS 0.17± 0.041 0.12 ±0.042 *** 7.76 e-12 
DPRS  -0.18± 0.046 -0.12 ±0.042 *** 1.08 e-13 
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D. Multivariate Analysis 

The data have been analyzed with the Orange software 
tool, a Python data-mining suite implemented by the 
University of Ljubljana [13]. A set of multivariate methods, 
including Logistic Regression (LR) with stepwise variable 
selection, Naïve Bayes (NB), Support Vector Machines with 
Linear and Gaussian Kernel, Classification trees, have been 
tested within a ten-fold cross-validation scheme. The 
performance of the method has been assessed by computing 
Accuracy, Sensitivity, Specificity, Area under the ROC curve 
(AUC), F-measure, Brier Score and Matthews Correlation 
Coefficient. Finally, a simple scoring system has been 
extracted from the entire data set by applying stepwise 
variable selection to a LR model.  

III. RESULTS 

The accuracies of all the tested methods, shown in Table 

III, were higher or equal than 90%, with the exception of the 

Classification Tree.  

In general, the data are well separated by a linear decision 
boundary, as shown by all performance indices. In particular, 
both SVM with a linear kernel and LR show the same 
performance in terms of accuracy, sensitivity and specificity, 
but LR obtains a better AUC. For these reasons, the LR 
classifier was selected, as it provides: i) an easy to be 
interpreted classification model, based on an additive scoring 
system of the problem variables; ii) statistical tools to select 
the most important variables.  

The ROC curve of the LR model is shown in Figure 1. 

 

Fig. 1 - The empirical ROC of the logistic regression model . 

 

TABLE III PERFORMANCE OF THE MULTIVARIATE CLASSIFICATION  

METHOD 

 

 

Fig. 2 - The nomogram derived from the LR model. The value of each 

variable is associated to a score. A total score is computed as the sum of the 

scores of the variables. The total score is then mapped to the probability of 
being a IUGR fetus. In the example, a subject with rcov=20, Apen=0.94, 

LTI=9 and LZ=0.66 has a total score of 215 and a probability of being a 

IUGR fetus equal to 0.95. 

When compared with the LR built with the best univariate 
predictor, covariance, the multiparametric strategy allows 
significantly improving the 10-fold prediction performance in 
terms of accuracy (from 84% to 92%), with a 10% 
improvement of sensitivity. 

After running the stepwise selection algorithm with the 

LR model, four variables have been retained: Apen, LTI, 

LZC and RCO. These variables have negative odds ratios. 

Therefore, all variables values are inversely related to the 

probability of being an IUGR fetus. Thanks to the model, it 

is possible to derive a simple scoring system that can be 

represented with a nomogram, as shown in Figure 2. 

IV. DISCUSSION AND CONCLUSION 

The problem of identifying IUGR fetuses during 

pregnancy has been faced through various approaches in the 

literature. In the recent years our group proposed different 

indices based on LZC and multiscale entropy [14,15] and on 

DPRS and APRS [11]. Other researchers introduced the idea 

of Power Rectified Signal Average and used different 

indices (average acceleration capacity - AAC) [16, 17]. Most 

of these parameters are highly significant in discriminating 

healthy fetuses from IUGRs, but all considered a single 

feature extracted from the FHR signal and tried to 

demonstrate that the proposed index was better than the 

others.  

The truth is that a single index cannot summarize by itself 

the features of all pathophysiological processes driving the 
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development of a fetus towards the IUGR condition.  In 

previous works we examined couples of indices together in 

order to check if clusters exist able to separate healthy from 

IUGR fetuses in a two-dimensional domain [4, 15], 

obtaining in both cases quite good results. 

As a matter of fact, many controlling mechanisms can 

affect the heart rate variability and they may act linearly 

and/or non linearly on the FHR in pathological situations. 

Only a multivariate approach, considering both linear and 

non linear parameters, can really improve the discrimination 

of healthy and pathological fetuses.  

In this paper we used multivariate analysis of FHR 

parameters with an almost complete, although not 

exhaustive, approach. We selected a set of eight parameters 

(STV, LTI, covariance, ApEn, SampEn, LZC, APRS and 

DPRS), three of them belonging to classical linear indices 

and five related to non linear properties of the FHR signal, 

all showing discriminative ability for IUGR fetuses when 

adopted as “stand-alone” parameters [4].  

By means of data mining techniques available in Orange, 

we exploited some of the most popular classification 

methods, able to deal with both continuous and discrete 

variables. We tested methods designed to learn linear and 

non-linear decision boundaries. In case of similar 

performance, we selected methods that provide transparent 

classification rules.  

In particular, we were able to show that a simple Logistic 

Regression model, using only four of our parameters 

(covariance, LTI, ApEn and LZ Complexity) can reach very 

high performance in the discrimination task, much higher 

than any single parameter by itself. In the four-dimensional 

space of the parameters healthy and IUGR populations are 

separated by a linear decision boundary, which does not 

happen if we consider the parameters in a lower dimensional 

space. Moreover, the reduced set of four parameters consists 

of two linear and two non linear indices, implicitly showing 

that different control mechanisms play important roles in the 

development of a pathological condition.  

It is important to mention that the four parameters have 

been chosen on the basis of the well-known stepwise 

procedure, which is designed to select variables combining 

both backward and forward elimination. This process tends 

to select parameters that are not correlated and that provide 

good classification performance when they are jointly used. 

This of course does not mean that other parameters, dropped 

from the model only because they are correlated with the 

selected ones, have no clinical importance. 

In conclusion, our multiparametric approach should be 

extensively tested in the clinical practice. Its main advantage 

resides in the fact that it can produce an overall score 

extracted from the four selected parameters and the 

physician can immediately interpret this score. 
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