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Abstract— Hand human gesture recognition has been an im-
portant research topic widely studied around the world, as this
field offers the ability to identify, recognize, and analyze human
gestures in order to control devices or to interact with computer
interfaces. In particular, in medical training, this approach is an
important tool that can be used to obtain an objective evaluation
of a procedure performance. In this paper, some obstetrical
gestures, acquired by a forceps, were studied with the hypothesis
that, as the scribbling and drawing movements, they obey the
one-sixth power law, an empirical relationship which connects
path curvature, torsion, and euclidean velocity. Our results
show that obstetrical gestures have a constant affine velocity,
which is different for each type of gesture and based on this
idea this quantity is proposed as an appropriate classification
feature in the hand human gesture recognition field.

I. INTRODUCTION

Hand posture and gesture recognition provide an alter-
native to obtain a more intuitive communication between
human and traditional machines. The main applications in
this field include the medical gesture recognition, performed
in order to achieve an objective assessment of surgical skills
[1], [2]. In recent years, some researchers have been focusing
to find the similarities and differences among different sur-
gical gestures. Most of the works are oriented to know what
kind of variables (spatial and temporal) should be used to
perform the classification. In any case, the variables involved
should be related with both kinematic and dynamic aspects
of trajectories generation. Some early studies have suggested
that the CNS (Central Nervous System) associates represen-
tations for the movement based on geometrical and temporal
attributes instead of motor execution or muscle activation
[3], [4]. In particular, during drawing movements, humans
tend to decrease the instantaneous tangential velocity of their
hands at the same time the motion curvature increases and
similarly, the velocity increases when the trajectory becomes
straight [5], [6]. This relationship has been shown to be well
described using a two-third power law, an empirical law that
shows the correlation between local geometry and kinematics
of human hand motion in planar drawing trajectories [7], [8].

However, if planar drawing movements follow this power
law does not imply that it is an explicit relationship for every
human movement planned by the CNS. Although, it has been
generalized for some types of human movements and also
for motion perception and prediction [9]. In [10], the two-
third power law is applied to the smooth pursuit motion of
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eye, specifically controlled by distinct neural motor structures
and a particular set of muscles. Whereas Vieilledent et. al
have studied some curved locomotor trajectories with the
hypothesis that, also during locomotion, movements obey
this relationship [11]. Another important result in this field
is related to the affine velocity of each trajectory. Pollick
et al. show that if instead of computing the Euclidean
speed, the affine velocity is calculated, then the unique
function that involves the curvature and generates an affine
invariant velocity is specifically the two-third power law [8].
It means that the hand writing trajectories implies motion
at constant affine velocity. This fact shows that the power
law and kinematic aspects of movement can be described
by examination to the affine space instead of the euclidean
one [12]. Actually, affine concepts have been applied to the
analysis of images motion in [13].

Furthermore, it was demonstrated that the two-third power
law is not enough to explain general three-dimensional
drawing movements. Experimental results suggest that the
movement at constant affine velocity is the main principle
and the two-third power law could be a special case. In
this way, a new power law (one-sixth power law) has been
proposed to facilitate the description of spatial drawing
movements [14], [15]. Based in these results, it was probed,
that for the specific case of three-dimensional scribbling
gestures, the one-sixth power law explains the data better
than the two-third power law.

In this paper, an analysis of the affine velocity on ob-
stetrical gestures is presented. Constant affine velocity is
demonstrated for this kind of hand human gestures and the
histogram behavior for each gesture, is presented. Addition-
ally, some modifications of the power law’s exponents across
two different gestures are described. However, calculating
the average over all subjects and gestures, the power law
exponents are mostly in concordance with constant spatial
affine velocity. This is an important result related to the
importance of non-euclidean geometry in the medical gesture
segmentation and recognition field.

II. ONE-THIRD AND ONE-SIXTH POWER LAWS

The inverse relationship between euclidean velocity v and
curvature κ during planar drawing hand trajectories is defined
by the two-third power law (1):

v = ακ−
1
3 , (1)

where v and κ are defined for a planar motion by:

v =
√
ẋ2 + ẏ2 κ =

|ẋÿ − ẍẏ|
(ẋ2 + ẏ2)

3
2
, (2)
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and where α is a gain factor. In this case, ẋ, ẏ and
ẍ, ÿ are the first and second derivatives of x, y relative to
time. Previous works have demonstrated that in drawing
movements, the gain factor α is approximately constant for
simple elliptical movements, but is piecewise constant for
more complex trajectories [14], [16], [17].

Meanwhile, the affine velocity va for planar motion is
defined by:

va = |ẋÿ − ẏẍ| 13 . (3)

This equation describes the cube root of the signed area
of the parallelogram generated by the first and second
position derivative of motion with respect to time. With
some algebraic manipulations of (2) and (3), it is possible to
express the Euclidean Velocity as :

v = vaκ
−1/3. (4)

If (4) is compared with (1); one can conclude that motion
with constant affine velocity is equivalent to motion that
obeys the two-third power law. If one performs the same
transformation, one can obtain the equations that describe
the spatial motion in drawing trajectories. Formally, for a
spacial trajectory v, κ and the torsion τ are defined by:

v =
√
ẋ2 + ẏ2 + ż2 (5)

κ =

√
(z̈ẏ − ÿż)2 + (ẍż − z̈ẋ)2 + (ÿẋ− ẍẏ)2

(ẋ2 + ẏ2 + ż2)
3
2

(6)

τ =
|drdt ,

d2r
dt2 ,

d3r
dt3 |

||drdt ×
d2r
dt2 ||

, (7)

where ||•|| and × denote vector magnitude and cross product,
respectively. Spatial affine transformations conserve the vol-
ume enclosed by the shape. Then, the spatial affine velocity
at any point is defined by the volume of the parallelepiped
generated by the first, second, and third derivative at that
point [14]:

va =
∣∣∣dr
dt
,
d2r

dt2
,
d3r

dt3

∣∣∣ 16 , (8)

where | • | denotes the scalar triple product. Using some
algebraic manipulations of (5), (6) , (7), and (8), it is possible
to prove that spatial motion at constant affine velocity entails
the one-sixth power law as following:

v = va(κ2|τ |)− 1
6 = vaκ

−1/3|τ |−1/6 (9)

III. ONE-SIXTH POWER LAW APPLIED ON
OBSTETRICAL GESTURES

A. Experimental Procedure

An analysis of several data sets, acquired by an instru-
mented obstetrical forceps coupled with the BirthSIM simu-
lator, is presented (Fig. 1) [18]. With this device, a medical
practitioner can proceed to forceps blades placement.

Fig. 1. Obstetrical Forceps

The BirthSIM simulator consists of anthropomorphic mod-
els of the maternal pelvis and the fetal head. The instru-
mented forceps allow to measure displacements inside the
pelvis. In the experiments, six obstetrical residents were
asked to perform 30 forceps blade placements providing for
each trainee 60 trajectories: 30 left blade trajectories and 30
right blade trajectories. The forceps placements are carried
out in two different sessions of 15 forceps blade placements
(Fig. 2). In each trajectory, the fetal head is positioned
according to the ACOG (American College of Obstetrics and
Gynecology) classification on an outlet LOA+5 presentation
(Left Occiput Anterior location and station +5cm from the
ischial spines plan).

B. Data Processing

The position data were interpolated using a cubic splines to
calculate the different derivatives with smoother trajectories.
Based on the splines computation, variables such as velocity
v, curvature κ, and torsion τ were calculated using their
analytical derivatives. In order to avoid uncertainties when
the torsion is zero, a threshold was used in the different
calculations.

C. Linear Regression

Several simulations were performed in order to examine if
the relationship between the velocity, curvature, and absolute
value of torsion could represent the obstetrical gestures. Fig.
3 presents some examples of the correlation found between

Fig. 2. Left and right blade trajectories

1827



(a) Sample Data Set - Left Blade

(b) Sample Data Set - Right Blade

Fig. 3. Linear regression obtained for a sample data set (Left and Right
Hands)

k
1
3 |τ |−1/6 and the norm of the Euclidean velocity |v| using

a gradient descent algorithm [19].
These results show that there is a proportional relationship

between both quantities (v and k
1
3 |τ |−1/6). That means

that obstetrical gestures, like scribbling movements, are also
governed by the one-sixth law. In order to analyze the
variance found in each linear regression, a histogram was
computed for each gesture. Due to the data variance has
a similar behavior than a Gaussian one, then a Gaussian
density function was fitted to the results. Fig. 4 shows
the results calculated for a sample data set acquired from
the experiments. Despite the fact that the left gesture is
easier than the right one (less complex and less rotation),
the dispersion is higher than the right one. This is due to
the fact that the left hand is the less skillful hand for the
people involved in the experiments. However the maximum
dispersion to the linear regression is similar for both gestures.

D. Power Law to Describe Obstetrical Gestures

The survey carried out in this paper includes an analysis
over the one-sixth power law. In this case, the exponents of
(9) were not taken as fixed constant. In order to calculate
the best exponents that fit the data acquired in this work, a
logarithmic linearization of (9) was performed:

log(v) = log(vaκα|τ |β) = log(va) + α log(κ) + β log(|τ |).
(10)

This expression can be rewritten as z = γ+αx+βy, where
z = log(v), x = log(κ) and y = log(|τ |). Based on this
expression, in order to calculate α, γ and β, a multivariate
linear regression was performed using a gradient descent
algorithm [19] (Fig 5 and Fig 6).

(a) Histogram Sample Data - Left Blade

(b) Histogram Sample Data - Right Blade

Fig. 4. Histogram of a Sample Data (Left and Right Blade)

In Fig. 7, the average values for both exponents (α and β)
are presented for each subject involved in this experiments.
The results show that the exponent α has an approximate
average value of − 1

5 ranging approximately from − 1
7 to − 1

4 .
The exponent β, on the other hand, presents an approximate
average value of − 1

12 varying from values as − 1
16 to − 1

8 .
The deviation for each gesture shows that the left trajectories
have a higher variance than the right ones for each exponent
calculated.

Based on the values of the constant γ, the affine velocity
was calculated taking into account the relationship γ =
log(va). Fig. 8 presents the values of affine velocity for
each gesture performed for each person involved in this
experiments. As for the previous results the dispersion for
the gesture performed by the left hand is higher compared

Fig. 5. Multivariate Linear Regression - Left Blade
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Fig. 6. Multivariate Linear Regression - Right Blade

Fig. 7. Free Exponents Calculation

with the right one. Additionally, Fig. 8 shows that the affine
velocity of the right gestures, in every case, is lower than the
values calculated for the left gestures. The results obtained
are clustered in such a way that is possible distinguish
between both gestures for each subject.

IV. CONCLUSION

Hand gestures recognition is an interesting interaction
paradigm in a variety of medical applications. In particular,
greater efforts have been directed to find similarities and
differences among obstetrical gestures. The main question
has been focused to figure out what spatial and temporal
variables should be used in this field. In this paper, an
experimental relationship between velocity, curvature and

Fig. 8. Affine Velocity for each gesture

torsion is used to calculate a new suitable feature to classify
gestures: The affine Velocity. The experiments involved in
this survey include two obstetrical gestures acquired using an
instrumented forceps. The affine velocity calculations allow
us to classify between gestures for each subject involved
in the experiments. The results obtained present a new
alternative to analyze medical gestures by examining the
affine space rather that the euclidean one. Our ongoing
research in this field is focused on increasing the number of
gestures and analyzing the correlation between novices and
experts surgeons. Additionally, affine velocity could be used
to segment complex medical movements such as surgical
gestures in order to obtain a more accurate classification.
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