
  

  

Abstract— Introduction of effective home-based exercise 
programs in older adults and people with chronic conditions 
requires implementation of appropriate safeguards to prevent 
possible side effects of strenuous exercise. In each exercise 
program the following exercise modes can be generally 
recognized: rest, main exercise, and exercise recovery. However, 
approaches for automated identification of these exercise modes 
have not been studied systematically. The primary purpose of 
this study was (1) to assess whether time-domain HRV 
parameters differ depending on exercise mode; (2) to identify 
optimal set of time-domain parameters for automated 
classification of exercise mode and build a classification model. 
Using discriminant analysis, two HRV parameters (RRtri and 
MeanRR) were identified which yielded 80% classification 
success in identifying correct exercise mode by applying 
generated discriminant functions. 

I. INTRODUCTION 

Telerehabilitation systems supporting home-based 
exercise are gaining wide recognition [1-3]. High acceptance 
of home-based physical telerehabilitation systems has been 
demonstrated in individuals with mobility impairments, frail 
elderly, and people with chronic cardiovascular conditions 
[4-6]. Introduction of effective home-based exercise programs 
in older adults and people with chronic conditions requires 
implementation of appropriate safeguards to prevent possible 
side effects of strenuous exercise. In each exercise program 
the following exercise modes can be generally recognized: 
rest, main exercise, and exercise recovery. However, 
approaches for automated identification of these exercise 
modes have not been studied systematically. The goal of this 
pilot project was to explore opportunities of automated 
classification of general exercise modes using heart rate 
variability (HRV) analysis. 

Changes in autonomic control of heart rate during and 
after exercise have been previously described [7-8]. Most of 
the studies used HRV parameters in frequency domain to 
identify changes in autonomic control occurring over time 
during endurance training [9-10]. The limitation of using 
HRV in frequency domain is that these parameters are 
generally more applicable for a stable process and require 
longer periods for analysis. For intra-exercise monitoring 
shorter periods of analysis may be preferred with 
understanding that during exercise autonomic control is in 
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transition. Analysis of short-term HRV parameters in time 
domain has been shown effective during transitional processes 
in autonomic balance caused by various types of stress 
[11-12]. These techniques for HRV analysis have not been 
applied systematically for intra-exercise monitoring of 
autonomic control. 

The primary purpose of this study was (1) to assess 
whether time-domain HRV parameters differ depending on 
exercise mode; (2) to identify optimal set of time-domain 
parameters for automated classification of exercise mode and 
build a classification model. 

II. METHODS 

A. System and Data Acquisition 
Five consecutive healthy adult volunteers (2 females and 3 

males) participated in the study. The participants were asked 
to use the interactive Biking Exercise (iBikE) system [13-14] 
for cycling exercise of two different intensities. They were 
guided by the iBikE system in following a standardized 
exercise procedure which consisted of the following five 
consecutive steps: (1) 1-min rest; (2) 5-min lower intensity 
exercise; (3) 1-min recovery; (4) 5-min higher intensity 
exercise; (5) 1-min recovery. For further analysis, the step #1 
was called “Rest,” the steps #2 and #4 were called “Exercise,” 
and the steps #3 and #5 were called “Recovery.” In this study, 
both lower and higher intensity exercises consisted of lower 
limb cycling. The iBikE system presented exercise intensity 
on an interactive touch screen dashboard helping users in 
following their exercise prescription [15].   

The first 5-min cycling exercise intensity was 1.5 
miles/hour and the second 5-min cycling exercise intensity 
was 2.5 miles/hour. Overall, the exercise procedure took 13 
minutes. Each participant made three study visits on different 
days within 1-2 weeks repeating the same 13-min exercise 
procedure during each study visit. Before starting the exercise 
procedure, a wireless electrocardiogram (ECG) sensor 
(BN-RSPE, BIOPAC Systems, Inc., USA) was mounted on 
participant chest. Pre-gelled/disposable ECG electrodes (LL 
Electrode Series, Lead-Lok®, Inc., USA) leads were 
connected to the participant to obtain a Lead II trace. 

The actual 13-min exercise procedure (including 1-min 
rest at the beginning) commenced after 5-minute resting 
period to achieve cardiovascular system stabilization. During 
the exercise procedure, 1-kHz ECG was continuously 
sampled by a data acquisition system (MP150, Biopac 
Systems, Inc., USA) that was connected to a laptop. Raw data 
from ECG were band-limited from 0.05 Hz to 150 Hz to 
minimize noise. 
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TABLE II.  HRV DEPEMDING ON EXERCISE MODE  

 
Rest Exercise Recovery Total 

Mean SD Mean SD Mean SD Mean SD 
MeanRR 811.72 131.23 557.19 94.67 616.19 116.55 585.84 121.98 

SDRR 32.70 14.63 25.84 25.91 59.24 26.87 31.51 27.98 
RMSSD 20.85 8.04 18.56 31.30 28.36 39.92 20.25 31.75 
NN50 2.60 5.91 1.76 6.00 2.83 4.09 1.99 5.73 

pNN50 3.18 6.54 1.72 6.24 3.19 5.11 2.06 6.11 
RRtri 6.71 1.85 4.23 2.20 9.19 3.16 5.18 2.97 
TINN 143.33 94.58 114.80 118.37 232.83 138.86 135.15 126.85 

SD: standard deviation, N are:  
15 for Rest, 150 for Exercise, 30 for Recovery, and 195 for Total,  
MeanRR (ms): the mean of RR intervals, SDRR (ms): standard deviation of RR intervals,  
RMSSD (ms): squre root of the mean squared difference between successive RR intervals,  
NN50 (n.u.): number of successive RR interval pairs that differ more than 50 ms,  
pNN50 (%): NN50 divided by the total number of RR intervals,  
RRtri (n.u.): the integral of the RR interval histogram divided by the height of the histogram,  
TINN (ms): baseline width of the RR interval histogram 

 

 
TABLE III.  HRV PARAMETER CORRELATIONS 

 MeanRR      
SDRR 0.203 SDRR     

RMSSD 0.071 0.798 RMSSD    
NN50 0.083 0.553 0.610 NN50   

pNN50 0.133 0.537 0.576 0.990 pNN50  
RRtri 0.488 0.593 0.202 0.318 0.345 RRtri 
TINN 0.070 0.921 0.858 0.552 0.513 0.473 

 

 
TABLE IV.  PARAMETERS IN THE DISCRIMINANT ANALYSIS 

Step Tolerance F to Remove Wilks' Lambda 
1 RRtri 1.000 59.110  

2 
RRtri 0.762 56.247 

50.205 
0.683 

0.430 
MeanRR 0.762 42.086 0.619 

 

 
TABLE V.  EIGENVALUES IN THE DISCRIMINANT ANALYSIS 

Function Eigenvalue % of Variance Cumulative % CC 
1 0.618 58.5 58.5 0.618 
2 0.439 41.5 100.0 0.552 

CC: canonical correlation 

B. Analysis 
Each 13-minute exercise procedure has been split into 13 

consecutive 1- minute tracings of raw ECG signal consisting 
of 1 “Rest” tracing, 10 “Exercise” tracings, and 2 “Recovery” 
tracings. The tracings were obtained from each volunteer by 
data acquisition software (AcuKnowledges 4.2, BIOPAC 
Systems, Inc., USA). Since each of the 5 participants 
performed 3 times the standardized 13-min exercise 
procedure, the final analysis included 15 1-min “Rest” 
tracings, 150 1-min “Exercise” tracings, and 30 1-min 
“Recovery” tracings. Each 1-min ECG tracing was analyzed 
by a specialized HRV analysis software [16]. The resulting 
HRV analysis yielded the following time-domain parameters 
of HRV for each 1-min tracing: the mean of RR intervals 
(MeanRR), standard deviation of RR intervals (SDRR), 
square root of the mean squared difference between 
successive RR intervals (RMSSD), number of successive RR 
interval pairs that differ more than 50 ms (NN50), NN50 
divided by the total number of RR intervals (pNN50), the 
integral of the RR interval histogram divided by the height of 
the histogram (RRtri), baseline width of the RR interval 
histogram (TINN). Each 1-min tracing was categorized as 
“Rest,” “Exercise” or “Recovery” and resulting HRV 
parameters were assigned to the corresponding category. 

All statistical analyses were performed using IBM SPSS 
Statistics 21 (IBM, USA). Group statistics and bivariate 
correlation analyses were conducted to examine the overall 
means and standard deviations of the continuous 7 
time-domain parameters of HRV for 3 exercise categories 
(“Rest,” “Exercise” or “Recovery”). Relationships between 
each HRV time-domain parameter were investigated by 
correlation analysis. Discriminant analysis was conducted (1) 
to find the best variable set for discrimination among 3 
exercise modes; (2) to compose discriminant functions based 
on linear parameter combinations; and (3) to build a 
predictive model for automated identification of exercise 
mode using time-domain HRV parameters. To achieve that a 
stepwise analysis was carried out, specifically Wiks’ lambda 
method was used. 

III. RESULTS 

A.  Group statistics and Correlations 
The means and standard deviations of 7 time-domain 

HRV parameters were calculated for each of 3 exercise 
modes as well as for total exercise procedure. As shown in 
TABLE I, all 7 HRV parameters changed significantly during 
transition from one exercise mode to another. Generally, HRV 
values of “Exercise” appeared to be lower than values of 
“Rest” and ‘Recovery’. Between HRV values of “Rest” and 
“Recovery,” no unidirectional changes were observed with 
specific change directions depending on a particular 
parameter. Bivariate correlations between each HRV 
time-domain parameter ranged from 0.070 to 0.990 as can be 
seen in TABLE II. For SDRR, correlation with the other 
parameters exceeded 50%. Other notable correlations 
exceeding 50 % were found between RMSSD and NN50, 
RMSSD and pNN50, RMSSD and TINN, NN50 and pNN50, 
NN50 and TINN, and pNN50 and TINN. 

B. Canonical Discriminant Functions 
To discriminate a priori defined categorical groups 

(“Rest,” “Exercise,” and “Recovery”), a stepwise discriminant 
analysis was performed. At each step, the parameters that 
minimized the overall Wilks’ Lambda were entered. The 
maximum number of steps was 14, entered time-domain 
parameters of HRV were RRtri and MeanRR, and the other 5 
time-domain parameters of HRV were removed. In the 
resulting model, RRtri had 0.762 of tolerance, 56.472 of F to 
Remove and 0.683 of Wilks’ Labda, MeanRR had 0.762 of 
tolerance, 42.086 of F to Remove and 0.619 of Wilks’ 
Lambda, and  the model made by RRtri and MeanRR had 
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50.205 of F to Remove and 0.430 of Wilks’ Lambda as shown 
in TABLE III. 

As the result of this analysis, two canonical linear 
discriminant functions were generated to calculate Score1 and 
Score 2: 

Score 1 = 0.45 RRtri - 0.001 MeanRR - 1.564 

Score 2 = -0.187 RRtri + 0.011 MeanRR – 5.612 

The eigenvalues of Function 1 and 2 were 0.618 and 0.439 
respectively. The proportion of discriminating abilities of the 
Function 1 and Function 2 were 58.5 % and 41.5 % 
respectively. The canonical correlations of Function 1 and 
Function 2 were 0.618 and 0.552 respectively as shown in 
TABLE IV.  

C. Classification Statistics 
The classification was processed for overall 195 sets that 

included 15 sets of “Rest,” 150 sets of “Exercise,” and 30 sets 

of “Recovery,” and the prior probabilities was set for all 
groups equal. 

As shown in Figure 1, the group centroids (Function 1, 
Function 2) of “Rest,” “Exercise” and “Recovery” were 
(0.390, 2.252), (-0.392, -0.144) and (1.784, -0.408) 
respectively. The graph of all combined groups is also shown 
in Figure 1. 

The classification results are shown in TABLE V. The 
classification success was assessed using original and 
cross-validated modes which in case of our data sets did not 
differ. Percentage of correct and incorrect classifications was 
based on the generated Function 1 and Function 2. In case of 
“Rest,” 80% of observations were classified correctly as 
“Rest” group, but the remaining cases were incorrectly 
classified as “Recovery” (20%). In case of “Exercise,” 82% of 
observations were correctly identified as “Exercise,” but 
5.3 % were misclassified as “Rest” and 12.7% - as 
“Recovery.” In case of “Recovery,” 70 % of observations 
were correctly classified as “Recovery” but 10 % were 

                            Rest                                               Exercise                                          Recovery 

 
 

          Canonical Discriminant Functions 

 
○: data of Rest, ○: data of Exercise, ○: data of Recovery,       and   1 : centroid of Rest,      and    2 : centroid of Exeicise,      and    3 : centroid of Recovery 
 

Figure 1.  Groups Graphs 

TABLE I.  CLASSIFICATION RESULTS 

  Modes Predicted Group Membership Total Rest Exercise Recovery 

Original 

Count 
Rest 12 0 3 15 
Exercise 8 123 19 150 
Recovery 3 6 21 30 

% 
Rest 80.0 0.0 20.0 100.0 
Exercise 5.3 82.0 12.7 100.0 
Recovery 10.0 20.0 70.0 100.0 

Cross- 
validated 

Count 
Rest 12 0 3 15 
Exercise 8 123 19 150 
Recovery 3 6 21 30 

% 
Rest 80.0 0.0 20.0 100.0 
Exercise 5.3 82.0 12.7 100.0 
Recovery 10.0 20.0 70.0 100.0 
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misidentified as “Rest” and 20% - as “Exercise.” In cross- 
validation each case was classified by the functions derived 
from all cases using the leave-one-out method.  As shown in 
TABLE V, there were no difference in prediction of the actual 
exercise mode between the original validation and the 
cross-validation. Both classification estimates yielded overall 
80% of correctly classified cases using Function 1 and 
Function 2 generated by discriminant analysis. 

IV. DISCUSSION 

In this study, we were able to demonstrate a possibility of 
automated classification of exercise mode using HRV 
time-domain parameters. Seven major HRV time-domain 
parameters were acquired during three exercise modes 
including “Rest,” “Exercise” and “Recovery” to assess 
whether the HRV parameters are affected by the exercise 
modes and to identify the optimal combination of these 
parameters to discriminate between these 3 exercise modes. 
Statistical analyses clearly demonstrated effect of exercise 
mode on the HRV parameters and determined discriminant 
functions to classify the exercise modes. Three main findings 
from this study are discussed below. 

First, the mean values of 7 continuous numeric 
time-domain parameters of HRV were obtained for each 
exercise mode. The group statistics showed that the mean 
values differ between 3 modes of exercise. The observed 
differences among 3 modes of exercise supported the 
assumption that these 7 numerical parameters can potentially 
be used to categorize exercise mode automatically as “Rest,” 
“Exercise” and “Recovery.” The correlations among 7 
time-domain parameters of HRV demonstrated that there were 
potentially redundant parameters. High correlation between 
certain parameters showed that number of parameters may be 
reduced however low correlation between certain parameters 
underscored their potential unique contribution for the 
classification. 

Second, discriminant analysis allowed identify optimal 
combination or predictive parameters. Using stepwise 
discriminant analysis with overall 7 initial predictive 
parameters for categorizing the modes of exercise we were 
able to reduce number of predictive parameters to two. 
Among these 7 HRV parameters, RRtri and MeanRR were 
found for the final parameters for the classification. 

Third, Score1 and Score 2 were generated from two 
canonical linear discriminant functions, the territoral map was 
configured by Fisher’s linear discriminant function coefficient, 
and each data point for “Rest,” “Exercise” and “Recovery” 
modes was separated and described. In these graphs, the 
location of each data point is presented by (Score 1, Score 2) 
and the one-point that represented a characteristic of all data 
in each mode could be confirmed. The graph of canonical 
discriminant functions represented all data, their locations, 
and each mode’s centroid. In this graph, the distances between 
two modes and the graphical degree of classification could be 
found. Some data overlapped adjacent regions, and then the 
data overlapped on the graph of canonical discriminant 

functions. Therefore, the overlapped data resulted in errors of 
classification that were 20 % of ‘Rest’, 18 % of ‘Exercise’ and 
30 % of ‘Recovery’. Thus, better classification results may be 
obtained by accounting not only for the exercise mode but also 
in which stage of the mode the subject is (beginning, middle, 
or end). This can be accomplished in future studies with 
inclusion of a larger sample. However, overall 80% 
classification agreement is very promising and warrants 
further investigation. 
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