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Abstract— Research shows that older people (aged 65 years
and over) suffer many unintentional indoor falls which often
lead to severe injuries. As a result of an increasingly aged pop-
ulation in developed countries, a sizable portion of healthcare
funding is consumed in the treatment of fall-related injuries and
associated long-term care. Detecting falls soon after they occur
can be potentially live saving. In addition, early treatment of
fall-related injuries can reduce treatment costs by minimizing
health deterioration resulting from long periods spent incapac-
itated on the floor after a fall (a scenario known as a ‘long
lie’) and decreasing the number of hospital bed-days required.
In this study, a previously proposed unobtrusive nighttime fall
detection system based on wireless passive infrared sensors and
furniture load sensors is evaluated in a pilot study involving
three older subjects, monitored for a combined total of 174
days. No falls occurred during the study. The system reported
a false alarm rate of 0.53 falls per day, which is comparable
with similar unobtrusive and wearable sensor fall detection
solutions.

I. INTRODUCTION

Population aging is a common trend among developed

countries. In Australia, the proportion of people aged 65

years and over is expected to rise from 12.1% in 2010,

to 16.8% by 2020, and reach 22.6% by 2050 [1]. Similar

trends exist in the UK and USA [2]. Treatment of fall-related

injuries and associated care expenses is one of the largest

injury-related healthcare expenditures [3].

Research shows that between 20% and 35% of people

aged 65 years and over, and 50% of those over 80 years,

experience a fall at least once a year [4], [5]. Such high

rates of incidence contribute to a significant hospitalization

rate; 2.6% of all hospital admissions for persons aged 65

and over are the result of fall-related injuries, and over 60%

of these incidents involve the victim suffering at least one

fracture [4].

Among all unintentional falls, about 60% occur inside

buildings [6]. Studies show most falls happen at home [6],

where inadequate lighting is one of the most hazardous

environmental risk factors. Also, the bathroom is a common

location for falls due to slippery floors and lack of grab bars

[7].

Globally, there are many research projects developing

technologies to automatically detect falls. One possible so-

lution uses one or more accelerometers and gyroscopes

attached to the head and/or the trunk; see Schwickert et
al. for a comprehensive review of published methods [8].
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While wearable sensor solutions can indeed achieve accurate

results, this approach suffers from an inherent disadvantage,

namely the ambulatory device needs to be worn in order to

detect the fall. People are not likely to wear these devices in

situations where they wake up at night to use the toilet, or

while showering.

This paper describes the pilot evaluation of an unobtrusive

fall detection system, previously presented by Zhang et al.
[9], in the homes of three older subjects. This system intends

to detect falls while not interfering with normal activities of

daily living. Below, a discussion of prior art is presented,

before describing this work.

The majority of unobtrusive fall detection systems de-

scribed in the literature rely on video processing techniques

[10–14]. One important disadvantage of using video is that

it is perceived as excessively invasive of the user’s privacy

[15]. There are also difficulties with the installation of video

sensors, such as the need for calibration, to define exclusion

zones (such as the bed or sofa), and to ensure the scene is

not occluded by furniture. In addition, video-based systems

are not easily scalable, due to their power and computing

requirements.

A related solution aims to recognize the acoustic signature

of a fall [16], [17]. However, these systems have shown poor

false alarm rates, or accuracies.

Therefore, since wearable sensor-based systems are com-

pletely ineffective when not worn during the nighttime, and

also considering the privacy and practicability of the video-

and acoustic-based unobtrusive systems, this article reports

the performance of an unobtrusive fall detection system,

using low-cost environmental sensors. Specifically, this paper

describes a pilot evaluation and refinement of a variant of

the system previously described by the Zhang et al. [9].

This evaluation is performed in the homes of three older

individuals over a period of several weeks.

II. METHODS

A. System Design

A description of the core electronics and network

communications-related aspects of the system can be found

in Zhang et al. [9]. The transducers used by the system were

augmented here in some important ways, which are described

in the following.

1) Augmented PIR Sensor: The same passive infrared

(PIR) sensor was used as Zhang et al. [9] (Panasonic

AMN24111). However, this sensor has blind zones as sig-

nificant as 1 m2 at 5 m radial from the sensor caused by the
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Fresnel lens [18]. Hence, four PIR transducers are mounted

onto a cylindrical surface to form a single detection unit (c.f.

Fig. 1). Each PIR transducer is offset from its neighbor by

±5.75◦ about the vertical. The sensor is activated if any of

these four are activated by movement.

Fig. 1. Installed PIR sensor, constructed using four PIR transducer elements
to cover blinds zones.

2) Load Sensors: The water resistant vinyl pressure mats

(placed in the bed and on chairs to detect furniture use) used

by Zhang et al. were replaced with smaller FlexForce load

sensors (LS) (P/N: A301, Tekscan, Boston, USA). The LS

are thin, flexible sensor strips with a pressure sensing area

at one end, with an area of about 1 cm2, and change their

resistance with a change in applied force. Each sensor is

small enough to be placed under chair legs, and sofa and

bed legs/coasters.

B. Experimental Design

1) Study Participants: Three volunteers were recruited

from the Thomas Holt retirement village, Sutherland, Syd-

ney, Australia. The study participants provided written in-

formed consent prior to any study-related activities. The

study was performed between April and September, 2013.

The study was approved by the University of New South

Wales Human Research Ethics Advisory Panel ‘H’ (reference

number: 08/2013/26).

Demographic information for the study participants is

summarized in Table I.

TABLE I

SUMMARY OF DEMOGRAPHIC INFORMATION FOR STUDY PARTICIPANTS.

Age
(years)

Gender Height Weight Falls in
past year

Subject A 83 F 167 cm 55 kg 1
Subject B 84 F 152 cm 68 kg 1
Subject C 82 F 162 cm 80 kg 0

2) Sensor Installation: Sensor installation for a each

residential unit took approximately 90 minutes. PIR sensors

were installed in the corner of each room and attached to the

walls at a height of approximately 2.5 m using 3M Command

brand picture hanging strips, capable of supporting 1.8 kg per

set (c.f., Fig. 1).

The bed LS were placed between the frame leg and a thin

wooden baseplate to ensure the sensor was not deformed

due to uneven carpet surfaces. The chair LS where fixed

to the bottom of chair legs using an adhesive tape. When

installing the LS, calibration is required to account for the

variety of furniture weights; the device firmware is switched

to a calibration mode, which averages sensor readings with

and without a person sitting/lying on the furniture and sets

an appropriate activation threshold.

Fig. 2 shows the floorplan of Subject C’s unit. PIR sensors

are shown in orange, chair LS are green, and sofa/bed LS

are purple.

Due to resource limitations, sensors were not installed on

every chair or in every room in the unit. Installation locations

were prioritized based on what the subject suggested were

their most frequently used furniture and rooms, especially at

nighttime. The total number of sensors installed for Subjects

A, B and C, respectively was: 4, 4 and 5 PIR sensors; 4, 4

and 2 chair LS; 3, 3 and 3 bed/sofa LS.
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Fig. 2. Unit floorplan of Subject C, comprised of five PIR sensors (orange),
two chair LS (green squares) and three sofa/bed LS (purple ovals). The
storage area (shaded in orange) is not usually accessed by subject, and one
of the dining chairs is also rarely used.

3) Fall Diaries and Site Visits: Weekly visits were per-

formed to collect fall diaries to determine if the subject

fell during the preceding week, and to ensure the system

was working correctly. Additionally, as the fall detection

algorithm is not intended to function properly if more than

one person is present in the unit, by design, the fall diary

requests information on whether the participant had any

visitors to their unit that week. The signal database was also

backed-up, and the wireless sensor batteries replaced.

C. Algorithmic Refinement and Testing

The following provides a summary of the algorithm pre-

sented by Zhang et al. [9]. Sensor event data is extracted

from the database and uniformly re-sampled at 10 Hz, and

then processed by two separate and parallel sub-algorithms:

fall with unconsciousness (denoted Type-1 fall); and fall with

repeated attempted recovery (denoted Type-2 fall). Type-1

falls are identified by long inactive period on all sensors,

lasting longer than tu s; Type-2 falls are characterized by a

pattern of a continuous PIR activity (longer than tar s) while

furniture LS are inactive, which is inferred to be a potential

fall with repeated attempts to recover.

The system described by Zhang et al. was developed using

a scripted protocol with young actors. It is also expected
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that the time of day for which the algorithm is active (it

is designed to be used at nighttime) and the choice of fall

detection thresholds will have a significant impact on its

performance in a real home. Therefore, using data from

Subject A, the analysis period and thresholds were optimized.

These optimized values were then evaluated using data from

Subjects B and C.

III. RESULTS

A. Data Loss and Integrity Checking

Data loss occurred during the study. This was either caused

by the failure of a sensor (due to firmware bugs, power

regulator failure, and LS placement problems) or some part

of the wireless network (problems with the wireless router).

The integrity of the data was validated before analysis

proceeded. The data were segmented into daily epochs, from

midday of one day to midday of the next. Data for a given

day was deemed corrupt if: there was no sensor activity for

the entire day; or, any of the sofa/bed LS are continuously

triggered for an extended period of time (more than 16

hours). Days containing corrupted data are excluded from

the final analysis. The number of days of data corruption for

each participant are listed in Table III.

Using this methodology, only ten days of data were

considered to be corrupt, from a total of 174 monitoring

days. While data loss occurred due to rectifiable issues re-

lated to firmware programming and network protocol issues,

most other data loss was a consequence of the mechanical

robustness of the adhesive tape used to attached the chair LS;

abrasion when the chair was moved along the floor caused

the adhesive tape to tear.

B. Algorithm Refinement on Subject A

None of the three participants fell inside their units during

the data collection period. Table II shows the false positive

counts generated by the algorithm for Subject A (using

56 days of uncorrupted data) depending on the choice of

analysis period and time threshold value.

TABLE II

ALGORITHM FALSE POSITIVE (FP) RATES FOR SUBJECT A USING

VARIOUS TIME THRESHOLDS (tu) FOR TYPE-1 FALLS AND TYPE-2

FALLS (tar ), DEMONSTRATING A REDUCED FALSE POSITIVE RATE WHEN

THESE THRESHOLDS ARE INCREASED. ANALYSIS PERIODS OF 8PM-8AM

OR 8PM-5AM ARE CONSIDERED.

Threshold (s)
Analysis period Fall type 280 600 900 1200
8pm-8am Type-1 fall 388 88 5 4

Type-2 fall 217 76 33 19
8pm-5am Type-1 fall 172 53 3 2

Type-2 fall 29 7 7 7

To trade-off the delay incurred by selecting a longer

threshold with the reduced false positive rate this provides,

detection thresholds tu = 900 s and tar = 600 s were chosen

for Type-1 and Type-2 falls, respectively. In addition, the

analysis period is set to 8pm-5am.

C. Testing on Subjects B and C

Table III lists the results of testing the algorithm on data

from Subject B and Subject C, using tu = 900 s and

tar = 600 s, during the period from 8pm to 5am. Results for

the algorithm applied to data for Subject A are also shown

for completeness, remembering that the algorithm thresholds

were optimized using data from Subject A.

TABLE III

FALSE POSITIVE (FP) RATES FOR SUBJECT B AND SUBJECT C, DERIVED

USING THE IMPROVED ALGORITHM. RESULTS FOR SUBJECT A ARE

INCLUDED FOR COMPARISON PURPOSES.

Subject
Type-
1
count

Type-
1
rate

Type-
2
count

Type-
2
rate

Total
(days)

Corrupt
(days)

Combined
FP rate

A 3 0.05 7 0.13 56 4 0.18
B 9 0.12 51 0.70 73 4 0.82
C 6 0.13 16 0.36 45 2 0.49
Total 18 0.10 74 0.43 174 10 0.53

Type-1 fall: number of falls with unconsciousness detected.
Type-1 rate: number of false positive alarms per day rate for falls
with unconsciousness.
Type-2 fall: number of falls with repeated attempted recovery
detected.
Type-2 rate: number of false positive alarms per day rate for falls
with attempted recovery.
Total (days): total validated (uncorrupted) days of data recorded for
the subject.
Corrupt (days): total number of days of corrupted data.
Combined FP rate: false positive rate for all fall types (alarms/day).

IV. DISCUSSION

A. Algorithm Refinement for Subject A

Table II shows the importance of deactivating the system

at 5am, which is around the time when the subjects wake and

rise. The importance of increasing the detection thresholds

to 10-15 minutes is also evident.

Subject A did not fall inside their home during the study.

However, after applying the new thresholds and the reduced

analysis duration, there are still three erroneously detected

falls with unconsciousness (Type-1) and seven falls with

attempted recovery (Type-2). For the Type-1 falls, these cases

happened before they went to sleep. The duration of the

inactivities was greater than the detection threshold but less

than 20 minutes, which suggests the subject may have moved

out of the detection area (for example, left the unit), rather

than due to a system failure.

For the seven Type-2 falls, five cases happened in the

living room and two cases in the bedroom, all before the

subject went to sleep, the events had a duration between 20

minutes and 1 hour (when subjects were not sitting/lying).

It is not known what causes these misdetections, but it

could have been the subject performing domestic work, or a

malfunction of one of the LS.

B. Improved Algorithm Testing with Subjects B and C

Again, neither Subject B or Subject C fell inside their

home during the study period. Table III indicates that the
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false alarm rates are higher for Subjects B and C; combined

rate of 0.82 and 0.49 alarms per day, respectively. Discus-

sions with the subjects indicate that Subject A normally

sleeps from about 9pm every night. For Subjects B and C,

the normal sleep time was after 11pm. In particular, the data

suggested that there were two nights that Subject B did not

sleep in the bed, or did not sleep at all; she confirmed this

for at least one of these cases, when she was learning to

use a camera she received as a gift and moved around the

apartment taking photos. This resulted in prolonged periods

of PIR activation pattern without furniture use, contributing

to 23 Type-2 fall alarms in one night (out of 51 for the entire

73 days she was monitored). Also, Subject B normally sleeps

late at night (close to midnight) and likes to cook (extended

periods of activity in the kitchen) which both increase the

chance of Type-2 fall false alarms.

C. Comparison to Related Systems

Until now there has only been one other unobtrusive fall

detection project to have successfully conducted a real-world

evaluation involving older subjects, described by Stone et al.
[14]. This very extensive study captured nine real falls in

3,339 days of monitoring, and also used 445 simulated falls.

The system uses a Microsoft Kinect camera, operates all

day (not just at nighttime), and has a very low false positive

alarm rate of less than 4 alarms per month, but performance

deteriorates (as expected) if the view of the faller is occluded

and/or the faller is far from the camera.

The only other fall detection systems which have been

evaluated in a real-world setting are body-worn sensor sys-

tems. Bourke et al. [19] reported 0.42 false positive alarms

per day, compared to the 0.53 total false alarm rate obtained

in this paper. Bagalà et al. [20] evaluated 13 published

methods on a set of 32 real falls from 15 subjects, achieving

a poor sensitivity (mean±SD: 57.0%±27.3%) and moderate

specificity (mean±SD: 83.0%±30.3%), and with algorithms

generating between 3 and 85 false alarms per day for three

representative fallers.

V. CONCLUSION

This paper describes the first ever real-world evaluation

of a non-video-based unobtrusive fall detection system with

older adults. While no actual falls occurred during 174

monitoring days, the system demonstrated a promising false

positive rates of 0.53 alarms per day. This system could

potentially deliver significant advantages over wearable sys-

tems in terms of user compliance, and ultimately improve

the safety of older people living alone.
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