
  

 

Abstract— A wheelchair user’s activity and mobility level is 

an important indicator of his/her quality of life and health status. 

To assess the activity and mobility level, wheelchair 

maneuvering data must be captured and analyzed. Recently, the 

inertial sensors, such as accelerometers, have been used to collect 

wheelchair maneuvering data. However, these sensors are 

sensitive to noises, which can lead to inaccurate analysis results. 

In this study, we analyzed the characteristics of wheelchair 

maneuvering data and developed a novel machine-learning 

algorithm, which could classify wheelchair maneuvering data 

into a series of wheelchair maneuvers. The use of machine-

learning techniques empowers our approach to tolerate noises 

by capturing the patterns of wheelchair maneuvers. 

Experimental results showed that the proposed algorithm could 

accurately classify wheelchair maneuvers into eight classes, i.e., 

stationary, linear acceleration/deceleration, linear constant 

speed, left/right turns, and left/right spot turns. The fine-grained 

analysis on wheelchair maneuvering data can depict a more 

comprehensive picture of wheelchair users’ activity and mobility 

levels, and enable the quantitative analysis of their quality of life 

and health status. 

I. INTRODUCTION 

Information regarding wheelchair maneuvering 
characteristics is essential for revealing wheelchair users’ 
activity and mobility level [1], which is an important indicator 
of their quality of life and health status [2, 3]. In addition, 
wheelchair maneuvering characteristics are critical for 
studying safety issues as wheelchair-related accidents 
frequently occur, and some may lead to serious injuries [4]. 
Despite its importance, research on capturing and analyzing 
wheelchair maneuvering characteristics is still a relatively 
under-investigated area as there is only limited information on 
this topic [1, 5, 6]. 

Recently, the inertial sensors, such as accelerometers, have 
been used to collect wheelchair maneuvering data [7, 8]. The 
use of accelerometers is convenient due to the availability of 
commercial products, and also simplifies the experimental 
setup [7]. However, a big challenge associated with the use of 
accelerometers is that they are sensitive to noises. Even when 
an accelerometer is stationary, it still generates sensor readings 
due to the rotation of the earth, gravity, and/or other 
environmental noises. The current research uses low-pass 
filters to remove noises that have a frequency higher than a 
predefined cut-off threshold [7]. However, noises with a 
frequency lower than the cut-off threshold may still exist. As 
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a result, the noises will make it difficult to even determine 
whether the wheelchair is stationary or moving [7]. 

In this study, we aim to address this challenge by 
developing a machine-learning algorithm, which can 
accurately classify wheelchair maneuvers, such as the idle 
state (i.e., stationary), accelerations/decelerations, left/right 
turns, etc. The use of machine learning techniques can 
counteract noises by capturing the patterns of wheelchair 
maneuvers. By distinguishing the maneuver of idle state from 
other non-idle maneuvers, we can measure a wheelchair user's 
activity (e.g., maximum continuous maneuvering time, 
number of starts/stops, etc.) and mobility (e.g., active hours), 
which are the desired information studied in the current 
research [1-3, 7]. Besides the coarse-grained classification of 
the idle and non-idle maneuvers, our classification algorithm 
allows us to classify wheelchair maneuvers into eight classes, 
i.e., idle state, linear acceleration, linear deceleration, linear 
constant speed, left turn, right turn, spot turn to left, and spot 
turn to right. The difference between the maneuvers of spot 
turns and maneuvers of left/right turns is that spot turns rotate 
the wheelchair without changing its location while left/right 
turns change the location of the wheelchair along an arc. Such 
fine-grained analysis can depict a more comprehensive picture 
of wheelchair users’ activity and mobility levels. 

This study is an extension of our previous research, in 
which we constructed a mobile- and cloud-computing based 
system to capture wheelchair maneuvering data [9]. The 
accelerometer and gyroscope in a smartphone were used to 
capture wheelchair maneuvering data, which were then 
transmitted to the cloud for the subsequent data processing and 
storage. With the proposed classification algorithm, it 
becomes feasible to effectively analyze noisy sensor data from 
wheelchair users’ day-to-day maneuvers, and quantify their 
activity and mobility levels to measure their quality of life and 
health status. 

II. METHODS 

Unlike existing research, which extensively focuses on 
placing data loggers on the wheels of a wheelchair [1, 7, 8], 
our protocol only takes a single step, i.e., placing a smartphone 
on the armrest of a wheelchair to capture the maneuvering 
data. This is achieved by developing a smartphone app that 
controls the accelerometer and gyroscope in the smartphone 
[9]. Comparing with existing research, our approach largely 
simplifies the experimental setup. In addition, we also 
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employed the cloud computing technique to store and process 
wheelchair maneuvering data. The combination of mobile and 
cloud computing significantly improves the efficiency of data 
collection and storage.  

A. Data Modeling and Noise Reduction 

We model an instance of wheelchair maneuvering data as 
a 7-tuple vector:  

x, y, z, gp, gr, gy, t    (1) 

including accelerometer () and gyroscope (g) data in three 
axes, and a time-stamp (t) denoting when the instance is 
recorded. As shown in Figure 1, an accelerometer can capture 
accelerations in three axes (i.e., x, y, and z) and a gyroscope 
can record angular speed of pitch, roll, and yaw.  

 

Figure 1: Three Axes of the Smartphone 

As data captured by the accelerometer contains significant 
noises, we take two steps to reduce noises. First, we observed 
that the values of noises fluctuated within a certain range when 
the accelerometer was stationary. Hence, we average the 
sensor readings for the stationary period to obtain the averaged 

value  in axis d (d = x, y, or z).  is then used to shift the entire 

data set in axis d, i.e., deduct  from each data instance. 
Second, to further reduce noises, we use the Kalman filter [10], 
which is a well-known algorithm for filtering noises and 
generating precise estimates of the underlying system states.  

B. K-Nearest Neighbor 

Our proposed algorithm utilizes the k-nearest neighbor 
(KNN) algorithm, which is a widely used classification 
algorithm due to its simplicity and effectiveness [11, 12]. In 
KNN, a data vector is classified into a class based on the 
majority vote of its k nearest neighbors. This approach fits in 
our study because we can adjust the parameter k to mitigate the 
impact of noises. To measure the affinity to the neighbors, we 
use the Euclidean distance: 

   √∑ (𝑆𝑖
𝑘 − 𝑇𝑗

𝑘)
26

𝑘=1      (2) 

where Si (i = 1, 2, …, m) is a sample data vector and Tj (j = 1, 
2, …, n) is a testing data vector. Both of them are 6-
dimensional vectors because there are 6 elements (of 
accelerometer and gyroscope) defined in Equation (1). The 
timestamp t in Equation (1) is not considered by KNN because 
it is not related to wheelchair maneuvering behaviors. Instead, 
t is used for the subsequent activity and mobility analysis. Si

k 
denotes the k-th dimensional element in Si and Tj

k denotes the 
k-th dimensional element in Tj. 

C. Two-Step Classification Algorithm 

The two-step classification algorithm classifies wheelchair 
maneuvering activities into eight commonly used classes, 
namely, idle state (i.e., stationary), linear acceleration, linear 
deceleration, linear constant speed, left turn, right turn, spot 
turn to left, and spot turn to right. This algorithm was designed 
based on the characteristics of wheelchair maneuvering data. 
As shown in Figure 2, the gyroscope data of yaw can help us 
easily distinguish the turning maneuvers (e.g., left turns and 
right turns) from the linear ones (e.g., linear acceleration and 
deceleration). The turning maneuvers have significantly larger 
absolute yaw values than their linear counterparts. Hence, our 
algorithm employs a two-step strategy to classify a maneuver. 
In the first step, it tries to determine whether the given 
maneuver is linear or turning. It then determines the exact 
maneuver in the second step. The advantage of this two-step 
strategy is that it can significantly reduce the chances of 
misclassifying linear maneuvers into turning ones and vice 
versa.  

 

Figure 2: Yaw Gyroscope Data for Different Classes of Wheelchair 
Maneuvers 

 

Figure 3: Outline of the Two-Step Algorithm 

Figure 3 outlines the proposed two-step classification 
algorithm. The input to the algorithm is a data segment d 
representing a wheelchair maneuver. The segment d consists 
of a sequence of data vectors in a format defined in Equation 
(1). In Step 1, the function Project_Yaw projects the input data 
segment d into d1 (line 3 in Figure 3). Each vector in d1 is a 

singleton gy, i.e., the yaw gyroscope data gy. The reasons for 
using only yaw data are two folds. First, Figure 2 shows that 
data of yaw demonstrates distinctive patterns on linear and 

1. Function Classify_Maneuver(d) 

2.   Step 1:  

3.     d1  Projec_Yaw(d) 

4.     r  KNN(d1) 

5.   Step 2: 

6.      if is-Linear(r) then 

7.      d2  Project_Linear(d) 

8.     else 

9.      d2  Project_Turning(d) 

10.   end if 

11.   return KNN(d2) 

12. End 
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turning maneuvers. Second, this study focused on indoor 
settings, in which the ground was flat. Theoretically, the 
angular speeds of pitch and roll should be 0 in such an 
environment. Hence, our algorithm only considers yaw 
gyroscope data to determine the linearity of the maneuver by 
running the KNN (line 4).  

In Step 2, the algorithm first checks whether the maneuver 
has been identified to be linear (line 6). If it is linear, the input 
data segment d is projected into the linear format (line 7), i.e., 

y. Here, y is the acceleration on axis y, which is the 
wheelchair’s maneuvering direction. Accelerations on axis x 
are not considered because linear maneuvers do not have 
significant movements on axis x, which is perpendicular to the 
moving direction. Similarly, the angular speeds are not 
considered in liner maneuvers as well.  

If the maneuver is non-linear (line 8), the input data 

segment d is projected into the turning format (line 9), i.e., y, 

gy. Here, we employ acceleration data on axis y and yaw 
gyroscope data to precisely distinguish spot turns from regular 
left/right turns. This is because spot turns have larger absolute 
yaw speeds (as shown in Figure 2), while they demonstrate 
different patterns on accelerations of axis y from the regular 
left/right turns. Finally, our algorithm uses KNN to determine 
the exact wheelchair maneuver (line 11).  

D. Experiment 

We conducted an experiment inside an academic building 
in the University of Central Oklahoma. The smartphone we 
used was a Samsung Galaxy SII (GT-I9100) with Android OS 
4.1 Jelly Bean. The built-in sensors, including an 
accelerometer and a gyroscope, were used to capture 
wheelchair maneuvering data. The sampling rate was set to 
“SENSOR_DELAY_UI” [9]. The wheelchair was an 
Invacare® power wheelchair.   

We investigated four different K values for KNN used in 
our two-step algorithm, namely, K = 1, 3, 5, and 7. In KNN, 
each maneuver class was associated with 8 sample data 
vectors. Since the maneuvers were classified into 8 classes, the 
total number of sample data vectors was 64 in the sample 
space. When a testing data vector was provided, its class was 
determined by the majority of its K closest neighbors among 
the 64 vectors of sample data. Since raw sensor data contained 
significant noises, we did not use raw data in the experiments 
of classification. Instead, we conducted experiments on noise-
reduced data processed with Kalman filter. 

III. RESULTS 

TABLE I shows the experimental results. The columns 
include the value of K, the maneuver type, the number of data 
vectors that were tested, and the accuracy. Our two-step 
classification algorithm achieved very high accuracy in 
classifying wheelchair maneuvers. It perfectly classified the 
idle and spot turn maneuvers (i.e., 100%). Hence, our 
algorithm can precisely determine whether the wheelchair is 
moving. When K = 3, the algorithm achieved the highest 
averaged accuracy, i.e., 96.16%. 

 

 

TABLE I:  EXPERIMENTAL RESULTS ON THE TWO-STEP CLASSIFICATION 

ALGORITHM 

K Maneuver Types 
Num. of 

Vectors 

Accuracy 

(%) 

 

K=1 

Idle 136 100.00% 

Linear acceleration  65 90.77% 

Linear deceleration 53 98.11% 

Linear constant speed  227 90.75% 

Left turn  78 88.46% 

Right turn 95 94.74% 

Spot turn to left 73 100.00% 

Spot turn to right 72 100.00% 

Average   95.35% 

 

K=3 

Idle 136 100.00% 

Linear acceleration 65 90.77% 

Linear deceleration 53 96.23% 

Linear constant speed  227 97.80% 

Left turn  78 89.74% 

Right turn 95 94.74% 

Spot turn to left 73 100.00% 

Spot turn to right 72 100.00% 

Average   96.16% 

 

K=5 

Idle 136 100.00% 

Linear acceleration  65 90.77% 

Linear deceleration  53 94.34% 

Linear constant speed  227 98.24% 

Left turn  78 89.74% 

Right turn  95 90.53% 

Spot turn to left 73 100.00% 

Spot turn to right 72 100.00% 

Average   95.45% 

K=7 

Idle  136 100.00% 

Linear acceleration  65 90.77% 

Linear deceleration 53 83.02% 

Linear constant speed  227 98.68% 

Left turn  78 89.74% 

Right turn  95 90.53% 

Spot turn to left 73 100.00% 

Spot turn to right 72 100.00% 

Average   94.09% 

 

IV. DISCUSSION 

The literature demonstrates that existing research 
attempted to depict an increasingly more comprehensive 
picture about wheelchair users’ activity and mobility levels. 
The information studied evolved from the subjective self-
reported questionnaires [13] to more objective maneuvering 
time and distance [5, 6], and later to the measurement of bouts, 
which refer to segments of continuous wheelchair movement 
[2, 7]. Our fine-grained analysis on wheelchair maneuvers 
enables us to perform these analyses effectively. As our 
classification algorithm can accurately classify wheelchair 
maneuvers (see Table I), we can easily distinguish the 
maneuver of idle state from other maneuvers. Plus, time-
stamps are included in all the data instances from the 
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accelerometer and gyroscope. Hence, for the mobility level, 
we can measure the active hours by summing up the hours 
spent on all non-idle maneuvers. For the activity level, the 
maximum continuous maneuvering time can be determined by 
identifying the longest piece of data sequence sandwiched in 
between two consecutive idle states. Similarly, we can count 
the number of starts/stops and the number of bouts. By 
applying the trapezoidal rule or Simpson’s rule [14] to 
accelerations, we can make more quantitative measurements 
on the activity level (such as the maximum continuous 
maneuvering distance), and the mobility level (such as the 
daily maneuvering distance, averaged speed, etc.). 

In addition, the research area of indoor localization [15, 16] 
is related to our study. Indoor localization is especially 
important for wheelchair users because disability is often 
accompanied with impaired ability of spatial cognition [17]. 
However, existing indoor localization systems primarily target 
at healthy people. The localization is usually achieved through 
step detection and step length estimation [15, 16]. 
Unfortunately, wheelchair maneuvers do not possess such 
characteristics related to steps. The accelerations and 
decelerations of wheelchairs are instantaneous (usually less 
than 1 second). The subtle changes in maneuvers as well as the 
noises in maneuvering data compound the difficulty in 
determining the correct maneuvers. Our two-step 
classification algorithm overcame these challenges and 
achieved satisfactory precision in classifying wheelchair 
maneuvers as shown in Table I. As a result, our study may 
contribute to research on indoor localization as well. 

A. Study Limitation 

Our experimental environment is basically a 2-D setting as 
the floor is flat without up and down variations. In the next 
step, we will conduct experiments in more complex indoor 
environments. 

V. CONCLUSION 

In this study, we strived to characterize wheelchair 
maneuvering data to depict a comprehensive picture of 
wheelchair users’ activity and mobility levels.  As raw sensor 
data contained significant noises, we applied the well-known 
Kalman filter to reduce noises. Then, we developed a novel 
two-step classification algorithm to perform fine-grained 
analysis on wheelchair maneuvers. This algorithm was 
designed based on the characteristics of wheelchair 
maneuvering data, which demonstrated distinctive patterns on 
linear and turning maneuvers when the yaw angular speeds 
were considered. The first step of the algorithm tried to 
determine whether the given data segment was a linear or 
turning maneuver. Then, the second step of the algorithm 
determined the exact class of the maneuver. Experimental 
results showed that this two-step algorithm achieved high 
accuracy in classifying the wheelchair maneuvers even though 
noises still existed.  

In the next step of our research, we will utilize the two-step 
classification algorithm to improve the precision of 
maneuvering distance measurements. First, we will employ 
this algorithm to identify wheelchair maneuvers. Then, we will 
calculate the maneuvering distance for each of the maneuvers 
with a suitable approach. The individual distances will be 
finally summed up to obtain the overall distance. This 

approach will largely mitigate the accumulated errors that 
existing approaches suffer. Therefore, our approaches will be 
able to depict a more accurate and comprehensive picture of 
wheelchair users’ activity and mobility levels. 
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