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Abstract— This paper presents an improved environment-

adaptive noise suppression solution for the cochlear implants 

speech processing pipeline. This improvement is achieved by 

using a multi-band data-driven approach in place of a 

previously developed single-band data-driven approach. Seven 

commonly encountered noisy environments of street, car, 

restaurant, mall, bus, pub and train are considered to quantify 

the improvement. The results obtained indicate about 10% 

improvement in speech quality measures. 

I. INTRODUCTION 

Cochlear Implants (CIs) are surgically implanted devices 
that enable hearing sensation in profoundly deaf people. It is 
known that speech understanding by CI patients drops 
significantly in noisy environments. The literature includes 
many studies, e.g. [1, 2], where noise suppression is 
achieved by treating all noise types as noise with no 
distinction in the characteristics of the noise in a particular 
environment.  

 In the previous works conducted by our research team 
[3-6], a more effective noise suppression in terms of speech 
quality was developed by automatically adapting to different 
noise types. In addition, the real-time implementation of our 
environment-adaptive speech enhancement was provided as 
part of the CI speech processing pipeline on the FDA-
approved PDA (Personal Digital Assistant) research 
platform. In these works, the adaptive-environment aspect 
was achieved by utilizing a number of gain tables for 
different noise environments based on the data-driven 
approach in [7]. In other words, for each noisy environment, 
a gain table discretized over a range of priori and posteriori 
SNRs was obtained. This table was built without 
distinguishing among different frequency bands. 

Noting that the spectrum of real-world noise signals 
varies depending on different frequency bands, this paper 
provides a multi-band environment-adaptive speech 
enhancement approach. In this approach, a number of gain 
tables were trained for different frequency bands. It is shown 
that this multi-band approach generates improved results 
over the previously developed single-band approach. 

The rest of the paper is organized as follows: Section II 
provides an overview of the previously developed 
environment-adaptive speech processing pipeline of CIs. The 
new multi-band approach is then presented in section III 
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followed by the experimental results in section IV. Finally, 
the conclusion is stated in section V. 

II. OVERVIEW OF PREVIOUSLY DEVELOPED ENVIRONMENT-

ADAPTIVE NOISE SUPPRESSION PIPELINE 

Fig. 1 shows a block diagram of the environment-
adaptive pipeline for cochlear implants that was previously 
developed in [3]. This environment-adaptive CI speech 
processing pipeline is briefly mentioned here to set the stage 
for the understanding of the multi-band approach. The 
pipeline consists of two parallel paths running in real-time: 
speech processing path, and noise detection/classification 
path. The noise detection/classification path uses a Voice 
Activity Detector (VAD) to determine if a current signal 
frame is speech+noise or pure noise. If it is found to be pure 
noise, mel-frequency cepstrum (MFCC) or sub-band features 
are extracted and fed into a trained Gaussian Mixture Model 
(GMM) or Random Forest (RF) classifier to determine the 
noise type [8]. The speech processing path includes a 
parameterized noise suppression component whose 
parameters get automatically used based on the noise class 
determined by the classification path. 

A. Data-driven Noise Suppression 

To achieve speech enhancement by noise suppression, a 
gain function is used to map the magnitude spectrum of the 
input noisy speech signal to an estimate of the associated 
clean spectrum according to 
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where kÂ and kR  are the estimated clean spectral and noisy 

amplitudes in the frequency bin k for the time frame n, 

respectively, G
~

denotes the optimized gain function, 

and k & k represent the priori and posteriori SNRs, 

respectively. To compute these SNRs, estimations of the 

clean spectral variance )(kx and noise spectral variance 

)(kd are needed. The so called decision-directed estimator 

involves the use of the following rule to update the priori 
SNR for each frame n [9]:  

A Multi-Band Environment-Adaptive Approach to                            

Noise Suppression for Cochlear Implants 

Fatemeh Saki, IEEE Student Member, Taher Mirzahasanloo, and Nasser Kehtarnavaz, IEEE Fellow 

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 1699



  

   













 min

2

,1)()1(
),(

)1(ˆ
max)(ˆ 


 n

nk

nA
n k

d

k
k  

where  is a weight close to one and min  is a lower bound 

on the estimated value of )(ˆ nk . In this paper, the estimator 

and noise tracking discussed in [7] are utilized. 

According to the estimated priori and posteriori SNRs, 
the spectral amplitude of the enhanced (clean) signal is 
estimated from the noisy signal based on an assumed 
probability density function and the optimization of an 
objective function. The objective function can involve 
MMSE, log MMSE, maximum a posteriori (MAP) 
estimation methods [10] or involve more recent data-driven 
methods [7]. In the data-driven methods, no estimation of the 
spectral variance is required. A brief explanation of the data-
driven approach is provided next.  

Let X and X̂ be the clean and enhanced signals. In the 
data-driven approach, the aim is to find the function 

),(
~

kkG   so that by applying it to the noisy signal, the 

estimated clean signal gets close to the clean signal. In other 

words, the average distortion )ˆ,( XXD between clean and 

enhanced signals for ),( kk   pairs is minimized. This 

distortion can be any of the following: Weighted-Euclidean 
(WE), Log-Euclidean (LE), Weighted-Cosh (WC) or simple 
mean-square error (MSE) [7, 11]. Mathematically, the 
following equations describe the data-driven approach: 
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where G
~

is a look-up table discretized over a grid of priori 

and posteriori SNRs. A parameter cell contains the closest 

values of ̂  and  to a grid point with values ijG
~

 stored in 

matrix G
~

. Thus, for a total of I and J priori and posteriori 

SNRs, respectively, the gain table consists of an I×J matrix 
containing the noise suppression parameters.  

III. MULTI-BAND DATA-DRIVEN NOISE SUPPRESSION 

In the data-driven method discussed in [7], for each 

frame and each frequency bin, there is an ),ˆ( kk  pair that 

falls into one of the parameter cells of the gain table. As a 

result, an ),ˆ( kk  pair from different frequency bins and 

different frames may fall into the same parameter cell during 

the training of ),ˆ(
~

kkG  involving a clean amplitude kA and 

a noisy amplitude kR .  

In the multi-band data-driven approach introduced here, 
the signal is divided into M different non-overlapping 
frequency bands. Then, M different gain tables 
corresponding to M frequency bands are trained. The 
frequency band decomposition can be done in Fourier 
domain or by using a filter bank. In each frame for a 

frequency band, the priori and posteriori SNRs ),ˆ( bkbk  , 

with b denoting the band index, are computed. Therefore, the 
parameterized suppression values for each frequency band 
get trained separately. It is worth mentioning that the size of 
the gain tables is kept the same considering that each gain 
table covers the same prior and posterior SNR ranges. 
Hence, there would be M gain tables for each environment, 
that is: 
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As mentioned earlier, in the single-band noise 

suppression, ),ˆ( kk  pairs from different frequency bands 

and different frames might fall in the same cell of the gain 
table. This means that the corresponding suppression value 

),ˆ(
~

G  for an input frame is only a function of the 

estimated priori and posteriori SNRs, and thus the frames 
from different frequencies are treated the same. This causes 
some distortion in the signal. By separating the gain tables 
based on the frequency bands, any such distortion can be 
avoided. Here it is worth pointing out that the data driven 
suppression is performed independently in each band. As 
reported in [3], the suppression processing time takes only 
2.4 ms out of a total processing time of 8.41 ms on the PDA 
platform for 11.6 ms frames. Hence, the two-band 

 

Figure 1.  Cochlear implant speech processing pipeline implemented in real-time [3] 
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suppression processing time is still expected to run in real-
time on the PDA platform. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

The introduced multi-band noise suppression was 
evaluated by using seven commonly encountered noise types 
of street, car, restaurant, mall, bus, pub and train. Noise 
samples were collected using the same BTE (Behind-The-
Ear) microphone worn by Nucleus ESPrit cochlear implant 
users at a sampling frequency of 8000 Hz. For training, the 
first 50 IEEE sentences provided in [12] (approximately 2-3s 
long) were used to serve as clean speech files. For each noisy 
environment, 50% of the noise files were added to each 
speech signal at several SNRs from -12.5 to 27.5 dB in steps 
of 5 dB to generate the training dataset. The signals were 
windowed into 25-ms frames via a Hamming window with 
50% overlap across two non-overlapping low and high 
frequency bands. In the experiments reported in this paper,  

and min were set to 0.98 and -19 dB, respectively, the prior 

SNR was discretized from -19 dB to 40 dB and the posterior 
SNR from -30dB to 40 dB in steps of 1 dB with a grid size 
of 60×71. It was found that the use of two bands maintained 
the real-time throughput of the pipeline.  

The speech quality measures of Perceptual Evaluation of 
Speech Quality (PESQ) and Log-Likelihood Ratio (LLR) 
[10] were computed to provide a quantification of the 
improvement in the noise suppressed output signals. Fig. 2 
shows the comparison of the PESQ and the LLR measures 
for the multi-band and single-band approaches for 0 dB 
SNR. The non-suppressed noisy signals are shown to serve 
as the baseline. The results reflect the averages on the second 
half of the 50 IEEE sentences which had not been used in the 
training dataset. This figure illustrates that the multi-band 
approach provides an improvement of nearly 10% in speech 
quality measures averaged across the noisy environments 
considered compared to the single-band approach. An 
Analysis of Variance (ANOVA) was conducted to show the 
statistical significance of the improvement (p <0.001). In our 
noise dataset, the files for train and car noises had 
approximately uniform spectrum over all the frequency 
bands. That is why the improvement did not generate 
statistically significant improvement over the single-band 
approach for these two noise types while for the other noise 
types the improvement was found to be statistically 

significant.  

Another experiment was carried out to examine the 
performance of the multi-band approach in the presence of 
other noise types which had not been considered in the 
original set of environments. Fig. 3 shows a comparison of 
the PESQ and the LLR measures exhibiting the outcome for 
the multi-band data-driven approach versus the noisy non-
processed signals for three noise environments of airport, 
airplane and market. These three environments in the 
classification path were placed into the closest class, namely 
street, bus and restaurant, respectively. Consequently, the 
suppression parameters of these detected classes were used 

 

 

Figure 2.  Bar charts showing the performance of the signle-band data-driven 

adaptive noise suppression, two-band data-driven adaptive noise suppresion 

and no-noise suppression in terms of the speech quality measures of Perceptual 

Evaluation of Speech Quality (PESQ) and Log-Likelihood Ratio(LLR) 

         

Figure 3.  Comparison of PESQ and LLR quality measures when encountering unkonwn noise 
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for the noise suppression. A visual comparison can be made 
in Fig. 4 where the spectrogram of the clean, noisy, single-
band data-driven suppressed and multi-band data-driven 
suppressed signals at 0 dB SNR are shown. This figure 
shows the background noise was suppressed by the 
developed multi-band method more than the single-band 
method, thus retrieving the speech signal more accurately. 

V. CONCLUSION 

A modification to the previously developed noise 

suppression path of the environment-adaptive speech 

processing pipeline of cochlear implants was introduced in 

this paper to improve speech enhancement via noise 

suppression. This modification involved the use of multiple 

frequency bands instead of a single-band to achieve data-

driven environment-adaptive noise suppression. The 

experimental results showed 10% improvement in speech 

quality measures for seven noisy environments considered 

while at the same time maintaining the real-time throughput 

of the entire speech processing pipeline. 
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Figure 4.  Sepectograms of the clean speech (top left) and noisy signals (top right) (SNR = 0 dB). Bottom left figure shows enhanced signals by the 

introduced two-band noise suppression approachand the bottom right one shows the single-band noise suppression approach; IEEE sentence:  “The clock 

struck to mark the third period” 
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