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Abstract— When imitating biological sensors, we have not
completely understood the early processing of the input to
reproduce artificially. Building hybrid systems with both ar-
tificial and real biological components is a promising solution.
For example, when a dragonfly is used as a living sensor, the
early processing of visual information is performed fully in the
brain of the dragonfly. The only significant remaining tasks
are recording and processing neural signals in software and/or
hardware. Based on existing works which focused on recording
neural signals, this paper proposes a software application of
neural information processing to design a visual processing
module for dragonfly hybrid bio-robots. After a neural signal is
recorded in real-time, the action potentials can be detected and
matched with predefined templates to detect when and which
descending neurons fire. The output of the proposed system
will be used to control other parts of the robot platform.

I. INTRODUCTION
Biologically inspired systems have been designed with

inspiration from biology and principles underlying the neural
control in animals. For example, using models of insect eyes,
Jeong et al. [1] have created artificial compound eyes with
thousands of tiny lenses packed side by side. These eyes
are expected to be used in camcorders for omnidirectional
surveillance imaging. However, in simple applications of
robotics (e.g., target tracking or collision avoidance), such
artificial eyes may not be suitable for low-cost mobile neu-
romorphic systems. Moreover, to reproduce biological visual
sensors better, we still need more efforts to make these eyes
more comparable to those found in nature [2]. Additionally,
the early processing of the visual information has not been
understood completely. A hybrid bio-robotics approach pro-
vides a promising solution for low-cost mobile neuromorphic
systems. Since 2005 the Higgins laboratory (University of
Arizona) has been interfacing the living brains of moths to
mobile robots. They designed prototype electrophysiological
recording printed circuit boards (PCBs) [3] and a PCB that is
capable of running in real time a software module for signal
processing with four neural signal recording channels [4].
Melano used Ortiz’s design in [3] to interface directionally-
sensitive visual neurons and pleurodorsal steering muscles of
the mesothorax with a robot [5].

With this robotic approach, we managed to create vi-
sual sensor inputs of a robot from dragonflies’ descending
neurons. The dragonfly has attracted our attention due to
its excellent vision. Dragonflies have the largest compound
eyes of any insect; each containing up to 30, 000 facets. An
adult dragonfly can see in almost all directions at the same
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time. Sensory signals of dragonflies are transferred from the
brain to thoracic ganglia through neurons called descending
interneurons. There are eight large individual descending
neurons that are very visual target-selective (“TSDNs”) [6].
Their visual receptive field properties were analyzed well by
Frye et al. [7]. From these properties of TSDNs, we detected
and classified action potentials (“spikes”) in electrophysio-
logical signals. Then, we defined spike templates for these
TSDNs to recognize which ones transmit which spikes. In
this study, this process is called spike sorting. Spike detect-
ing can be performed by threshold-based methods, energy-
based methods, or template-based ones. To detect spikes in
real time we need to use a simple algorithm. Though the
threshold-based methods execute relatively simple computa-
tion, they are sensitive to noise and require a step of setting
threshold levels [8]. The energy-based methods involve a
nonlinear energy operator (NEO) to estimate the square of
the instantaneous product of amplitude and frequency of
a sufficiently sampled signal [9] while the template-based
methods match spikes with filters. The latter one involves
multiple convolutions, it should not be a candidate for real-
time multichannel systems. From the review by Obeid et al.
[8], we chose the NEO algorithm to detect spikes.

We built spike templates through two main steps: ex-
tracting spike features, and then classifying spikes by these
features. Common spike feature extraction algorithms are
based on principal component analysis [10] and the discrete
wavelet transform (DWT) [11]. Current algorithms classify
similar spikes by k-means clustering [12], Bayesian classi-
fication [13], and super paramagnetic clustering (SPC) [14].
Extraction algorithms have been reviewed recently while
classification algorithms have been in need of a newer
review since 1998. From a recent review [15] and other
criteria of the system design (e.g. high accurate spike-feature
extraction), we chose the DWT and SPC approaches for the
proposed system. In summary, this paper proposes a design
for a visual motion detecting module in dragonfly-controlled
robots. Properties of the TSDNs are discussed first to provide
a background for neural information interpretation, then a
system architecture design is presented. We investigated the
performance and provided finally concluding remarks.

II. TARGET SELECTIVITY PROPERTIES OF
DRAGONFLY DESCENDING NEURONS

In the dragonfly, eight descending neurons in the ventral
nerve cord control oriented flight responses to the image
of target in the retina [6]. They are named according to
the longitudinal tract through which these neurons pass
in the prothoracic ganglion: DIT1, DIT2, and DIT3 for
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the dorsal intermediate tract; and MDT1, MDT2, MDT3,
MDT4, and MDT5 for the median dorsal tract [7]. These
interneurons have some similar characteristics. All of them
descend from the brain and have very big axons. They all
responded selectively to the movement of small target [6].
Five of the eight TSDNs have strong directional preferences:
MDT1, MDT2, MDT4, MDT3, and DIT1. Frye et al. [7]
identified the visual receptive field properties of these TSDNs
by recording responses when moving a target in each of
four orthogonal directions on a 90ox90o screen. Across the
preparations, the location and the directional preference of
the receptive fields remained constant, but the strength of the
response and the size of the receptive field varied. We used
these properties as a ground truth to detect a TSDN.

III. HARDWARE ARCHITECTURE DESIGN

We propose a real-time neural signal processing system
with a combination of PCB-based hardware and FPGA-based
software modules. The PCB-based provides analog signal
recording and digital signal processing functions. To avoid
interference between the different formats of signal process-
ing (analog and digital) and a small-size requirement,we
construct two separate PCBs. The analog PCB is designed
with high-pass filters (HPFs), low-pass filters (LPFs) and
notch filters to remove noise, electricity interference. We
employed the PCB with configurable cut-off frequencies
to configure a suitable setting for a particular recording
condition. The digital PCB contains a soft-core processor and
a memory subsystem. The soft-core processor is generated in
a hardware description language and can be implemented by
an FPGA device. We include external memories (SRAM and
Flash) to support multi-channel processing tasks. Because of
the mobility requirement and convenience for power saving,
an automatic configuration ability of this FPGA device is
preferred. To fit well into a small rack of a hybrid bio-robot,
the PCBs should have small dimensions and consume little
power supply. Fig. 1 captures our recently fabricated PCB.

Fig. 1. Recently fabricated digital PCB version in the Higgins laboratory.

To control the robot platform and remotely monitor, beside
headers for wire connection we embed a wireless transmitter
station for Bluetooth connections. This station is chosen to
have small space occupation, low power consuming, and
high-speed transmission. In our design, it consumes as low
power as 30 mA in the connecting mode (10 mA in the sniff
mode) and can deliver up to 3Mbps for distances to 100m.

IV. SOFTWARE ARCHITECTURE DESIGN

As the eight TSDNs contain the visual “sensing” signals
from the brain when a dragonfly is seeing a moving target,
we can use the visual receptive field properties to guide a
robot platform. Thus, we need to detect when and which
TSDN fires a spike from given recording signals. A time
instant of firing can be found by applying a spike-detection
algorithm, e.g. NEO in our case. To know which one of the
eight TSDNs a spike belongs to, we use a template-matching
method. Specifically, if a detected spike form matches very
well (quantified by a high correlation coefficient) with a
spike-template of a TSDN. Templates were pre-defined by
classifying spikes from given special stimulus data sets. We
built these templates with the DWT method for spike-feature
extraction and the SPC method for spike clustering.

A. Selected Algorithms

NEO provides the instantaneous energy of the high pass
filtered version of a signal. This feature makes NEO an
ideal detector of transients [16]. DWT relies on the wavelet
analysis technique to extract features of a spike. Basically,
to find differences among spikes, DWT is based on the
quantification of energy found in specific frequency bands
at specific time locations. In the SPC clustering method, the
ferromagnetic phase, the paramagnetic phase, and the super
paramagnetic phase can be considered a classification of one
single cluster, several tiny clusters, and a number of medium-
size clusters, respectively. Using the recommended setting
by Blatt et al. [17] (20 states, 11 nearest neighbors, and 500
iterations), the clustering process would mainly depend on
the temperature parameter and is robust to small changes
of other parameters. Once templates were built, we used
correlation-based template matching method to know which
one of the eight TSDNs a spike belongs to. The relevant
neuron corresponds to the best-matched template, i.e., the
one that has the highest correlation coefficient rX,Y with
the spike (1). The highest rX,Y should also be higher than a
level Cr that we expect the assignment is true (see Section
V-B).

rXi,Yj =
C{Xi, Yj}
σXi

σYj

(1)

where rXi,Yj
is the correlation coefficient between the ith

spike of a spike set X and the jth template of a template
set Y . C{Xi, Yj} is the covariance of Xi and Yj . σXi and
σYj

are the variances of Xi and Yj , respectively.

B. Neural Signal Processing

To build spike-templates for the eight TSDNs we gave
special visual stimuli then collected appropriate spike-form
samples. These special visual stimuli are designed to strongly
stimulate a particular TSDN according to given properties.
For example, if a moving target starts from the bottom right
corner of a stimulus screen with anterior orientation, there
will be spikes that mostly come from the MDT2 neuron. Af-
ter detecting all spikes in this stimulation case, we can cluster
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TABLE I
VISUAL STIMULATION AND CORRESPONDING TEMPLATES.

Orientation Starting at Segment Templates
Posterior Bottom far right Early DIT3
Posterior Bottom far right Later DIT1
Anterior Bottom far right Whole MDT2
Dorsal Top center Whole MDT1
Dorsal Top left Whole MDT3
Ventral Bottom right Whole MDT4

them to find the largest group of similar spike samples. The
average spike form of this group is then considered a spike-
template of MDT2. We built a total of six templates upon the
specifications of visual stimulation arrangements (Table I)
and names them after the respective TSDNs. Five templates
are for all strongly directionally selective neurons (MDT1,
MDT2, MDT3, MDT4, and DIT1). The sixth template is for
DIT3, serving as an example of a neuron that is not strong
directionally selective.

Though we have groups clustered automatically, we as-
sess reasonable template information manually. Hence, the
performance of the whole application depends not only on
the special visual stimuli we set up, and on the rightness of
the receptive field properties but also on the experience of
the person who assesses the classes for template information
gathering.

V. EXPERIMENT RESULTS

We conducted both hardware testing and software testing.
To characterize the fabricated analog PCB, we checked
the gains and the cut-off frequencies by using artificial
signals and tested the functionality of the spike detection
circuitry by using a biological analog signal. We verified it
independently from the digital PCB by using an I2C-USB
converter to communicate through a desktop computer. We
tested the software module with raw data sets collected from
dragonflies. In the preparations, the dragonfly’s eyes were
upside down to make recordings from the ventral nerve cord
more conveniently. The stimulus screen (1440×900 pixels)
was put next to the dragonfly. These recordings were im-
plemented with a single hook electrode around the ventral
nerve cord. The recorded signal was then stored in a digital
format at a sampling rate of 50kHz.

A. PCB Validation

In the frequency response with switch settings of
(BPF:100Hz−5kHz) the measured 3 dB points for the HPF
and the LPF were 250 Hz and 3.8 kHz, respectively. Though
the cut-off frequencies did not exactly match the theoretical
settings, this fabricated PCB still meets the demands of the
research. Fig. 2 shows a photo of the oscilloscope when we
detected spikes from a biological signal with the circuit. The
circuit detected spikes at very high speed, but because of
the using very simple threshold algorithm it had a quite high
false positive rate.

Fig. 2. Oscilloscope snapshot as verifying the spike detection circuit. The
top is a raw input signal. The bottom presents the detected pulse output.

Immediately after power-up, the digital PCB consumed a
low electric current (70 mA). After the soft-core processor
was generated successfully, the configuration file was loaded
to the FPGA. During the process of configuration, the electric
current of the digital PCB was up to about 130 mA. When
the process finished, the current returned to the initial value.
We built a soft-core processor for the FPGA with the man-
ufacturer’s system integration tool. Using a host computer
and the JTAG communication (“Joint Test Action Group”
standard), we loaded these output files into the FPGA for
the configuration step.

B. Spike-Sorting Application Tests

We gathered spike-pattern information for all six tem-
plates. Fig. 3 shows an example of the information we found
to build the MDT4 template from spike patterns. The whole
template set is shown in Fig. 4.We found that DIT1 and
DIT3 had a similar amplitude range but they were different
in the first half of their shapes. All the MDT group had a
smaller amplitude range (just ±1 V ) than the DIT group
had (±3.2 V ). To validate the whole template set, we tested
again with new data sets that had similar settings to the ones
we used to build templates, but were recorded in different
preparations. During this period, we varied the correlation
threshold level Cr and observed when we got unexpected
template matching results. Figs. 5 and 6 show cases of
testing for intended templates and the big arrows indicate
a suggested Cr in the figures. We found 0.88 → 0.9 is the
reasonable range of Cr for the template set.

Fig. 3. The MDT4 template and the waveforms used to build it.

We sorted out spikes with different arbitrary settings of the
stimulus. When the angle was small but not orthogonal to
the axes of the screen (e.g. 48o and 55o), only DIT3s were
indicated (Fig. 7). If the angle was also not orthogonal to
the axes of the screen but closer to 90o (e.g. 70o), DIT1s
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Fig. 4. The whole set of templates to compare their shapes.

Fig. 5. Test case for MDT3, DIT3, and MDT1. MDT3 spikes dominate
the observation among few DIT3 and MDT1 ones. Other TSDN spikes are
considered unexpected results (dot line).

appeared but still less than DIT3. All of these observed
results also agree with the investigation of visual receptive
field properties by Frye et al. [7].

VI. CONCLUSION

Results confirmed that the template set agrees with the
visual receptive field properties and can be used for spike
sorting. The proposed system can work as a visual infor-
mation processor in real time for dragonfly hybrid bio-
robots. There are some limitations found in the fabricated
PCBs. To fit a smaller robot platform, we should reduce
PCB size by choosing new models of digital switches
and potentiometers or finding a new method to vary the
capacitance and resistance components. Currently, these ones
cause a complicated I2C communication network and a
large space consumption. Though this system is aimed to
dragonfly hybrid bio-robots, it can be modified for another
kind of animal. Hence, the system may help better understand
the representations and computational architectures used by
different biological systems in neuroscience. Additionally,
different spike-sorting algorithms can also be applied to
the architecture. Consequently, the system can be used to
evaluate recent spike-sorting algorithms with real neural
signals instead of simulated ones.
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