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Abstract— This paper describes a novel method for the
identification of time-varying ankle joint dynamic stiffness
during large passive movements. The method estimates a linear
parameter varying parallel-cascade (LPV-PC) model of joint
stiffness consisting of two pathways: (a) an LPV impulse
response function (IRF) for intrinsic mechanics and (b) an LPV
Hammerstein cascade with time-varying static nonlinearity and
a time-invariant linear dynamics for the reflex pathway. A
subspace identification technique is used to estimate a state-
space representation of the reflex stiffness dynamics. Then, an
orthogonal projection decouples intrinsic from reflex response
and subsequently identifies an LPV-IRF model of intrinsic
stiffness. Finally, an LPV model of the reflex static nonlinearity
is estimated using an iterative, separable least squares method.
The LPV method was validated using experimental data from
two healthy subjects where the ankle was moved passively
by an actuator through its range of motion first without and
then with perturbations. The identification results demonstrated
that (a) the dynamic response of the intrisic pathway changes
systematically with joint position; and (b) the static nonlinearity
of the reflex pathway resembles a half-wave rectifier whose
threshold decreases and gain increases as ankle is moved to
dorsiflexed position.

I. INTRODUCTION

Ankle joint mechanics can be described by the dynamic re-
lationship between joint position and the torque acting about
it, i.e. dynamic joint stiffness. Two distinct physiological
mechanisms determine joint stiffness: (i) Limb inertia, visco-
elasticity of muscle-tendon complex, and active properties
of muscle contraction that together define intrinsic stiffness;
and (ii) The stretch reflex feedback that changes muscle
activation in response to muscle lengthening leading to reflex
stiffness. Therefore, modeling joint stiffness and estimating
its two components is critical for understanding human motor
control and has far-reaching implications for design and
control of active prostheses and orthotic devices.

However, measuring joint stiffness during movement is
difficult because it is modulated strongly by joint posi-
tion and neural activation, and is therefore time-varying
(TV). Many studies have quantified these changes for quasi-
stationary conditions, where the joint is perturbed around a
position operating point (OP) while subjects remain relaxed
or maintain a constant activation. Trials are repeated at dif-
ferent activation levels and position OPs and the changes in
the time-invariant (TI) stiffness model parameters monitored.
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These approaches estimate a valid local model at each quasi-
stationary condition but these local models cannot be simply
interpolated to represent the global TV behvaior during
movement. Nontheless, local models provide a model struc-
ture that can be utilized as the basis for TV identification.
Specifically, the reflex stiffness is modeled by a Hammerstein
system; i.e., a cascade of a static nonlinearity and a linear
dynamic element [1], [2]. The intrinsic stiffness is modeled
as either a non-parametric impulse response function (IRF)
[1] or a second-order mass-spring-damper (IBK) model [3].

Quasi-stationary studies by Mirbagheri et al. [2], and
more recently, Guarin et al. [3] showed that the intrisic
elasticity and reflex gain were highly modulated with the
position OP whereas damping and natural frequency of the
reflex dynamics remained almost constant over the ROM.
Furthermore, Jalaleddini and Kearney [4] showed that the
reflex threshold changed with position. These results suggest
that the TV reflex stiffness under passive condition (i.e., at
rest) can be represented by a Hammerstein system with a
TV static nonlinearity and TI linear dynamics.

Linear parameter varying (LPV) models have a structure
resembling that of a linear system but parameters that change
as a function of a scheduling variable (SV) [5], [6]. Recently,
Sobhani et al. [7], [8] used LPV identification to model TV
intrinsic stiffness and the reflex EMG response as having a
functional dependence on ankle position. This makes it pos-
sible to predict the response to novel movement trajectories.
This cannot be achieved using ensemble-based TV methods
[9], [10].

This paper combines and extends the LPV methodologies
developed for TV intrisic stiffness [7] and Hammerstein
systems [8], and uses it to estimate total joint stiffness
during passive movements. The new algorithm identifies
an LPV Parallel-Cascade (LPV-PC) model of joint stiffness
that comprises a LPV-IRF model for the intrinsic and an
LPV Hammerstein model for the reflex pathway, using joint
position as the SV. An LPV-IRF model structure is used since
we have observed that the intrinsic stiffness is more complex
than a second order LPV-IBK model.

II. THEORY !

A. Problem Formulation

The objective is to identify the LPV-PC model of ankle
dynamic stiffness depicted in Fig. 1 using N samples of
input position, pos(k), output torque, tq(k), and SV, p(k).

n this paper, matrices, vectors, and scalars are denoted by bold-face
uppercase, uppercase and lowercase letters, respectively.
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Internal signals that cannot be measured include: the reflex
nonlinearity output,z(k), intrisic torque,tq;(k), and reflex
torque, tq.(k). It is assumed that there is no voluntary
contraction and v(k) is an arbitrary colored noise signal that
is uncorrelated with the pos(k):

tq(k) = tq;(k) + ta, (k) + v(k) )
Define vectors comprising all sampled data:
TQ = | fq(0) fq(N-1) ]"
TQ; = [ tq;(0) ta;(N —1) 1" )
TQ.=[1g,(0) - ta(N-1)]"
V=[v0) - oN-1)]"

Represent intrinsic stiffness by an LPV-IRF model:
+L
tai(k) = " b (p(k)) pos(k — 1) ()

l=—L

with the IRF weights given by a basis expansion of p(k):
hi 2 hijg; (p(k)) )
j=1

where h;; is the (4, j)th coefficient for the i lag of IRF, h;;
g; (p(k)) is the j™ basis expansion of the SV; and n; is the
expansion order.

Rewrite (3) using matrices to obtain a data equation for the
intrinsic pathway. Define a tall vector containing the LPV-
IRF weights for lag I:

H=[ hn hin, | 5)
and 6; that stacks H; for all lags:
T
6;=[ H_.L --- Hp H,p | (6)

Define vectors for the basis expansion of SV:

Gi(k) = [ g1 (p(k)) gu (0(R) 1" )
and lagged samples of position:

P(k) = [ pos(k +1) pos(k) pos(k —1) |
®)

Then, the input to the intrinsic pathway will be the Kronecker
product of (8) and (7):

Ui(k) = P(k) ® Gi(k) )

so that the intrinsic torque defined by (2) and (3) is:
TQ; = V,0; (10)
where: U = [ U;(0) u(N-1) " an

Reflex stiffness is modeled as an LPV static nonlinearity
cascaded with an LTI linear system. The output of the reflex
nonlinearity is:

2(k) = f (dvel(k), p(k)) = }_wi (p(k) gi (dvel(k))

(12)
where dvel(k) is the ankle velocity delayed by reflex delay
and w; is a basis expansion on SV:
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Intrinsic pathwa: (1) V()

J‘::Th (‘( s p(t))pas(t —1)dt
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Fig. 1. The schematic of the LPV-PC model of ankle stiffness.

wi =Y wiig; (p(k)) (13)
j=1

where w;; is the coefficient of the product of the i basis
expansion of the delayed velocity, g; (dvel(k)), with the j"
basis expansion of the SV, g; (p(k)). Define G, (k) as the
basis expansion of SV with order n,, and DV (k) as the basis
expansion of delayed velocity with order n:

G, (k) = [ 91 (p(k)) gn, (p(k)) ]"
DV(k) = [ g1 (dvel(k)) gn (dvel(k)) ]

Represent the LTI component of the reflex pathway by the
state-space model:

X(k+1) =AX(k)+ Bz(k)
tq, (k) = CX (k) + Dz(k)

where, X (k) is a m x 1 state vector; and A, xm » Bmx1,
Cixm and Djx; are the state-space matrices:

(14)

15)

B=[b, - ,bn)"; D=[d (16)
Define:
Qi =[wir, + ,win, ] a7
Q:[Ql...gnf
U, (k) = DV (k) ® G (k)
Substitute (17) in (15) to yield:
X(k+1) =A.X(k)+ BoU,(k) (18)
tq. (k) = C,. X (k) + DU, (k)
where: b191T b1Q£
Bg=B® N = : : (19)
mef mef
Do=Dx Q= [ de dQZ ] (20)

Combine the intrinsic (3) and reflex (18) models to form a
multi-input-single-output (MISO) state-space representation:

X(k+1) =A.X(k)+ BiotUtor (k) @
t~q(k) = Cr. X (k) + DiotUor (k) + v(k)
where:

Ut (k) = [ Up(k) Ui(k) | (22)

Bg 0---0

Biot = —

(2L+1)n; columns

Dot = [ Da 6; | (23)
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Fig. 2. Experimental signals from subject S1 during a PT and a UT passive
movement trial: (A) ankle position, (B) torque, and (C) Soleus EMG.

B. Identification Algorithm

The objective is to identify (i) the parameters of the intrin-
sic LPV-IRF, 6;; (ii) the vector €2 of the reflex nonlinearity;
and (iii) the state-space matrices of the reflex LTI dynamics.

Use multivariable output error state-space (MOESP) sub-
space identification algorithms to estimate the state-space
matrices AT and ér [11]. Then, form the data equation:

TQ=TQ; +TQ,+V =U,0; +V,0,+V (24)
where the reflex regressor, ¥,., and parameters, 6, are [8]:
0 U,"(0)
v, = :

SN PU () CL AN T ULT(N 1)
(25
6, = [B"d]" ©Q (26)
Use the orthogonal projection from [12] to decompose the
intrinsic and reflex torques and estimate intrinsic stiffness
parameters:

9, =CTul (1w, v)Y 27)

where:

C=1-9v,vly, (28)
Use 9l to predict intrinsic torque using (10) and then estimate
the reflex torque:

TQ, =TQ — V0, = 0,0, (29)

Use this with the subspace LPV Hammerstein identification
method [8] to estimate B = {b1,--- , by}, d and 2.

III. EXPERIMENTAL VALIDATION

The utility of the LPV-PC model and identification algo-
rithm was examined for two healthy, male subjects.
A. Methods and Input Signals

Both subjects gave informed consent to the experimental
procedures which had been approved by McGill University’s
institutional review board. Subjects lay supine with their the
left foot firmly attached to the pedal of a hydro-electric
actuator operating as a stiff position servo. Details of the
experimental setup are described in [2]. Two types of trials
were performed: (i) Unperturbed trials (UT) where the ankle
was moved by the actuator through a multi-level trajectory
that spanned ankle positions from -0.4rad (plantarflexed, PF)
to +0.2rad (dorsilflexed, DF); and (ii) Perturbed trials (PT)
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Fig. 3. Identification data and results for subject S1: (A) input: position

perturbations computed as the difference between measured positions of a
perturbed and an unperturbed trial, (B) the identified intrinsic torque, (C) the
identified reflex torque, and (D) output: torque in response to perturbations
- computed from measurements and predicted.

where small signal, piecewise constant PRALDS (pseudo
random arbitrary level distributed signal) perturbations were
added to the multi-level trajectory for identification. The
multi-level trajectory was the same for both UT and PT
trials. It was low-pass filtered to 2.5Hz with a second-order
Butterworth filter to avoid sharp transitions from one level
to another. The levels were selected randomly from a set
having 10 levels. The ankle was maintained at each level
for a duration selected from a uniform distribution with
the range [4,7]s. The peak to peak amplitude of PRALDS
in PTs was £0.04rad with pulse durations selected from
a uniform random process with the range [250,350]ms.
This range was selected to have a wide-band, persistently
exciting, perturbation signal for identification and yet avoid
reflex response suppression at high mean absolute velocities.
Each trial lasted 2 minutes. Data was sampled at 1kHz and
decimated to 100Hz for identification.

B. Results

Fig. 2 shows a typical segment of a UT trial (red) with
the corresponding PT superimposed (blue). Soleus EMG is
shown in Fig. 2C confirms that (a) there was no voluntary
activation and (b) reflex responses were present only during
PT and were modulated by joint position; decreasing as ankle
was moved into plantarflexion.

The first step for the LPV-PC identification was to estimate
the responses evoked by the small amplitude perturbations;
to do this, position and torque records from the UT trial
were subtracted from those of the corresponding PT. Fig. 3A
shows the resulting position input; Fig. 3D shows the torque
response (blue).

The LPV-PC model estimated from these data accurately
predicted the torque; Fig. 3D shows that the predicted (red)
and observed torques (blue) were very similar. Indeed, the
variance-accounted-for (VAF) was greater than %92 for
both subjects. The intrinsic (Fig. 3B) and reflex (Fig. 3C)
responses predicted by the LPV model clearly vary with
joint position. Moreover, changes in the reflex torque were
consistent with those of the EMG response in Fig. 2C. We
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Fig. 4. The gain of the intrinsic stiffness frequency response computed
from its estimated IRF as a function of joint position for subject S1. The
low-frequency or elastic gain of intrinsic stiffness is also shown.

have planned to further validate the LPV model by simulating
its response to other movement trajectories and compare the
results with the corresponding experimental data.

Fig. 4 shows LPV-IRF model of intrinsic stiffness in
terms of the gain of intrinsic stiffness frequency response
computed from the IRF as a function of joint poisiton.
Significant modulations with joint position are evident; the
low-frequency gain increased towards DF and was minimum
near the mid-point between Neutral and PF positions. Similar
changes are evident in the location of the resonant frequency.

Fig. 5 shows the estimated LPV Hammerstein model of
reflex pathway. Fig. 5A shows that the static nonlinearity has
a strong uni-directional sensitivity to velocity and a slope
(corresponding to the reflex gain) that increases from PF to
DF ankle position. Fig. 5B shows that the estimated TI reflex
IRF resembles a second-order low-pass system.

IV. DISCUSSION

We presented a novel method for LPV identification of
ankle joint stiffness during large passive movements. The
method identifies an LPV-PC model of ankle stiffness con-
sisting of an LPV-IRF model for intrinsic pathway, and a
reflex pathway comprising of a TV nonlinearity and LTI
dynamics. The LPV-PC method can characterize changes in
intrinsic stiffness and reflex stiffness static parameters such
as gain and threshold as a function of joint position. The
application of the method was demonstrated by using it to
follow the changes in stiffness dynamics accompanying large
passive movements of the ankle in two healthy subjects.

The position dependent trends estimated in intrinsic and
reflex parameters were similar to those observed in quasi-
stationary identification studies at multiple position OPs [2].
The LPV approach provides this information much more
efficiently than the OP approach. It uses only two trials (UT
and PT) while the OP-based identification requires a large
number of trials to estimate trends with a similar resolution.

This LPV-PC methodology has other important advan-
tages: (i) It identifies the position-dependent nonlinear dy-
namics that cause TV behavior during movement. As such,
it provides a continous-time, global model of TV joint
mechanics instead of local models at each position OP, which
cannot be interpolated to reproduce the global behavior.
Therefore, the LPV-PC model can predict joint response to
novel movement trajectories. (ii) LPV models are well-suited
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Fig. 5. The identified LPV Hammerstein model of the reflex pathway of
subject S1: (A) estimated static nonlinearity as a function of joint velocity
and position, and (B) identified IRF.

for designing robust controllers of prostheses and orthotic
devices since the LPV control theory is well developed.
The new LPV approach can be applied to characterize
biomechanics of movement during other functional tasks
such as upright stance, and reaching and pointing. To identify
stiffness during active movements where both position and
activation level change, will require extending the identifi-
cation methodology to LPV systems where (a) the SVs of
both pathways are muscle activation in addition to position
and (b) the reflex linear dynamics are also time-varying.
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