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Abstract— The identification of atrial fibrillation (AF) sub-
strates is needed to improve ablation therapy guided by
electrograms, although mechanisms that sustain AF are not
fully understood. Detection of complex fractionated atrial
electrograms (CFAE) is used for this purpose. Nonetheless,
efficacy of this method is inadequate in the case of chronic AF.
Recent hypothesis proposes the rotors as fibrillatory substrate.
Novel approaches seek to relate CFAE with rotor; nevertheless,
such methods are not able to identify the associated substrate.
Furthermore, the patterns that characterize CFAE generated
by rotors remain unknown. Thus, tracking of rotors is an
unsolved issue. In this paper, we propose a non-supervised
method to find patterns associated with fibrillatory substrates
in chronic AF. We extracted two features based on local
activation wave detection and one feature based on non-linear
dynamics. Gaussian mixture model-based clustering was used
to discriminate CFAE patterns. Resulting clusters are visualized
in an electroanatomic map. We assessed the proposed method
in a real database labeled according to the level of fractionation
and in a simulated episode of chronic AF in which a rotor was
detected. Our results indicate that the method proposed can
separate different levels of fractionation in CFAE, and provide
evidence that clustering can be used to locate the vortex of
the rotors. Provided approach can support ablation therapy
procedures by means of CFAE patterns discrimination.

I. INTRODUCTION

Atrial fibrillation (AF) that is the most common sustained
arrhythmia and encountered affects 2% of the population, and
its incidence is increasing. AF is associated with thrombo-
embolics events and increased rates of death. Rotor hypoth-
esis is one of the most recent approaches to explain the
mechanisms that maintain the permanent and persistent AF.
Accordingly, AF is a consequence of the continued activity
of rotors turning at high frequency around an unexcitable
core [1]. Ablation has revolutionized the treatment of AF,
this procedure is performed using catheters and is guided by
electro-anatomical maps. Ablation treatment aims to avoid
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the formation and maintenance of fibrillatory conduction, by
generating lesions sets on the heart tissue which cause block-
age of electrical impulse propagation. However, in the case of
chronic AF, this therapy is not entirely successful, because
the etiological mechanisms that sustain the arrhythmia are
not entirely clear [2].

Detection of complex fractionated atrial electrograms
(CFAE) has been proposed as a tool to locate arrhythmogenic
substrates. Therefore, corresponding anatomical sites are
used as targets for ablation [3]. Methods to detect CFAE
have been developed, mainly including firsly characteristics
based on time intervals and amplitude [3], and latterly,
entropy measures including the Shannon entropy [4] and
approximate entropy [5]. Nonetheless, there is not enough
evidence to ensure that CFAE are related with rotors in
chronic AF, since different levels of fractionation are not
well defined by physicians [2]. Specific signal patterns that
identify rotors and other arrhythmogenic substrates remain
unidentified, thus, the detection of rotors is still an open
issue.

In this paper, we propose a method based on clustering
using Gaussian mixture models (GMM) to discriminate dif-
ferent levels of fractionation. The method is used to identify
different unknown patterns in CFAE in order to generate
electro-anatomic maps that allow locating the rotor vortex.

II. METHODS

A. Clustering with Gaussian Mixture Model

GMM assumes that the multidimensional probability dis-
tribution function (PDF) is the sum of Gaussians. Usually,
Expectation-Maximization (EM) is used to learn the pa-
rameters of the model that maximize the likelihood of the
data. Also, Bayesian Information Criterion (BIC) is used to
select the number of Gaussians. However, if the number of
mixture components is overestimated, it can be combined
hierarchically according to an entropy criterion [6].

B. EGM Signal Feature extraction

Analysis of fractionation is used to describe CFAE. Physi-
cians usually represent the fractionation levels using descrip-
tive characteristics such as peak count and time intervals. The
algorithm described by Kremen et al [7] to detect and evalu-
ate local activation waves (LAW) was implemented in order
to obtain some descriptive characteristics. Discrete Wavelet
Transform (DWT) was used to search for segments with
near-field and far-field activity. Afterward, two features were
calculated, the activation segment width (AW-width) and the
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number of zero crossing points in the activation segments
(ZC-AW). Approximate Entropy (ApEn) was calculated as a
third feature in order to capture information about the non-
linear dynamic behaviour of CFAE. ApEn is a non-linear
statistic proposed by Pincus [8] that quantifies the complexity
of signals. Therefore, a set of three features were computed.

III. EXPERIMENTAL SET-UP

In this paper, two sets of intracardiac electrogram (EGM)
signals were used to verify the performance of the proposed
methodology. Firstly, a database composed by EGM from
patients indicated for radiofrequency ablation of AF. AF
signals in this database were divided by physicians into 4
classes according to the level of signal fractionation. Sec-
ondly, electrograms acquired from a simulated chronic AF
episode. In both experiments, 3 features of EGM signals were
extracted. Clustering using GMM was performed in order to
discriminate different levels of fractionation. BIC was used to
select the number of components. In the second experiment,
using the information of the model, a pattern dependent
electro-anatomic map was constructed, where each color
of the map represented a group found by clustering and
suggested a different CFAE pattern. With the purpose of
locating rotors in this map, the color assigned for each cluster
was located at a position where the corresponding signal was
measured. Finally, the rotor was associated with one cluster.

A. Experimental data-set

A database constructed by “Staedtisches Klinikum Karl-
sruhe” from Germany was used in this project [9]. The
database holds 429 records acquired during pulmonary vein
isolation using a multipolar circular catheter. These signals
were recorded at 1.2 kHz sampling rate. All patients were
indicated for radiofrequency ablation of AF. The data were
filtered at 30-250 Hz, and the remaining baseline wander
and high noise was reduced by the wavelet decomposition
method described in [9]. The database was independently
labeled by two different electrophysiologists (EPs). Non-
fractionated EGM signals were considered as level 0 (C0).
The fractionated signals were categorized into three levels
of fractionation: mild, intermediate and high. C1, C2 and
C3 respectively, see Fig. 2. The 429 signals were distributed
into the classes of fractionation as follows: 153 signal in C0,
75 signals in C1, 148 signals in C2 and 53 signals in C3.

B. Simulated episode of AF and electrograms

A realistic 3D model of the human atrium was developed
in an earlier work [10], and included the main anatomical
structures, fiber orientation, electrophysiological and con-
duction heterogeneity and anisotropy. The Courtemanche-
Ramirez-Nattel-Kneller membrane formalism was imple-
mented to reproduce the cellular electrical activity. Changes
in the maximum conductance of different ionic channels
of human atrial cells observed in experimental studies of
chronic AF were incorporated into the action potential model
to reproduce the atrial electrical remodeling.

Fig. 1. Propagation of action potential in simulated episode of AF. A and
B are frames captured in different times
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Fig. 2. Samples of the considered EGM recording classes. LAW points
and Zero Crossing Points (ZC) detected by the descriptive feature extraction
algorithm are shown.

A chronic AF episode was simulated, and unipolar EGMs
in different points of the atrial surface were recorded at 1
kHz for the last 4 seconds of AF simulation, as described by
Tobon et al [10]. A set of 620 Bipolar signals were generated
by the subtraction of two adjacent unipolar EGM separated
by 1 mm. Fig. 1 shows 2 simulation frames in which the
action potential propagation is represented by colors and one
rotor could be seen in the posterior wall of the left atrium.

C. Features extraction

To compute the descriptive features based in LAW detec-
tion explained above, we used Discrete Wavelet Transform
with 3 decomposition levels and using a Coiflet 4 as mother
wavelet. The signal coefficients of detail were reconstructed
at level 3 (L3). L3 was normalized to its maximum absolute
value and thresholded at th = ϕ. Parameter ϕ was adjusted
using an adaptive threshold, as given in [11]. Adjacent
activation with intersegment space < 40ms was joined as a
LAW segment. The maxima and minima points were located
using the zero crossing detection in the first derivative. Only
max-min pairs with amplitude higher than a threshold ε and
corresponding ZC points were counted, see Fig. 2. Parameter
ε was selected according to the process described in [12].

Approximate entropy (ApEn) was calculated using the
following parameters m = 3, r = 0.38 as was evaluated
in a previous work. A feature matrix Θ ∈ R429×3 was
obtained by arranging the features of all the observations
in the database or the simulated event. Θ1 corresponds to
signals from database and Θ2 to signals from the simulated
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Fig. 3. Feature space in R3 of Θ1 - a. Distribution of the classes using
labels annotated by physicians. Note that classes are overlapped. b. Clusters
found using 5 Gaussians.

episode of AF.

D. Clustering

Normal mixture modeling via EM was implemented using
mclust package [13] in R. A parameterized covariance struc-
tures VVI (volume: variable, shape: variable and orientation:
diagonal) was evaluated and BIC was used to select the num-
ber of Gaussians. According to BIC criterion, the parameter
K, number of Gaussians, was established in K = 5. Using
the same criterion, K = 9 was selected to the set of features
Θ2.

IV. RESULTS AND DISCUSSION

A. Clustering of EGM from database

Fig. 3(a) shows the distribution of Θ1 in a R3 cartesian
coordinate system according to labels assigned by physi-
cians. The boundaries between classes are soft because the
patterns that correspond to each class are not clearly defined
in medical practice. Fig. 3(b) shows the distribution of Θ1

using the groups found by clustering using GMM.
BIC process identified 5 clusters. We suggest that lev-

els of fractionation could be explained better using more

TABLE I
CONFUSION MATRIX OF GMM CLUSTERING

Class 0 Class 1 Class 2 Class 3
Cluster 1 19 7 0 0
Cluster 2 108 0 0 0
Cluster 3 22 50 39 1
Cluster 4 1 0 16 35
Cluster 5 3 18 93 17

TABLE II
PERFORMANCE OF CLUSTERING WITH GMM

Sensitivity (%) Specificity (%)
Class 0 83.01 97.46
Class 1 66.67 82.49
Class 2 62.84 86.48
Class 3 66.04 95.48

than 4 scales to include different patterns. Table I shows
a confusion matrix with the results of the fractionation
levels discrimination. Table II shows obtained results for
evaluating sensitivity and specificity of the clustering, where
each cluster was labeled with the class corresponding to the
largest number of detected records. The correct rate was
71.10%. This result confirms the application of clustering
with GMM for discriminating EGMs between different levels
of fractionation.

B. Rotor detection based on clustering

Clustering with GMM was performed for the set Θ2

from the simulated EGM signals. Fig. 4 shows a color map
in which the red area corresponds to a cluster composed
by signals with a higher level of fractionation. This area
corresponds to one rotor vortex which can be seen in the
frame of action potential propagation extracted from the 3D
model (R area in Fig. 4). The electro-anatomic color map
was built using one color for each group found by clustering
with GMM. The map is represented on the plane using the
coordinates axis x and z from the posterior wall of the left
atrium where the signal was recorded in the simulated model.

Fig. 5 shows the distribution of Θ2 according to clusters
optimized by EM with K = 9 components. In this case, over-
estimation of the number of components was evaluated using
entropy criterion [6]. As a result, clusters 3, 4, 6, 8 and 9 can
be joined in the same cluster, and then, this group is modeled
by a Gaussian mixture of 5 components and corresponds to
signals with regular activation (non-CFAE) present in sites
outside the rotor area. These results suggest that clustering
could be used to locate arrhythmogenic substrates in AF,
such as rotors.

Supervised learning methods have been proposed to detect
CFAE [14], [15] and to classify levels of fractionation.
Nevertheless, because fractionation definition is unclear [2],
[3], the labeled signals used in the training process, usually
depend on subjective perception of EGM fractionation by the
physicians. This issue become a restriction for the clinical
usage of supervised approach. On the other hand, our results
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Fig. 4. Top: Action potential propagation in the model where a rotor is
located in the region marked by ellipse R. Bottom: Color map generated
by clustering applied to bipolar signals from region Z. Cluster labels are
represent by colors. The red cluster corresponds to rotor tip localization
(R). Samples of two signals are shown, a fractionated signal from the rotor
tip and a regular activation pattern from non-rotor area. Note that different
clusters are located around the rotor vortex, organized according to the
degree of fractionation.

indicate that a non-supervised method, such as GMM-based
clustering, can be used to detect patterns in CFAE related
with rotors without using a priori information of the data.

V. CONCLUSIONS

Our analysis evidences that GMM-based clustering ap-
plied to relevant EGM features is able to fulfill the following
conditions: i) discriminate CFAE with different levels of
fractionation, and ii) locate rotors in a simulated episode of
chronic AF. These findings indicate that the method proposed
can be the basis of a new tool to detect arrhythmogenic
substrates in AF.

Future studies should evaluate the used of soft clustering
and the implementation of a feature selection scheme to
include other features. The method requires further evalua-
tions using several simulations, including meandering rotors
and other sites around the atria to evaluate repetitiveness
and sensibility. Additionally, clinical evaluation is needed to
find real patterns presents in arrhythmogenic subtracts and to
provided evidence of the effectiveness to locate target sites
for ablation.
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