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Abstract—Due to fundamental characteristics of MRI that
limit scan speedup, sub-sampling techniques such as compressed
sensing (CS) have been developed for rapid MRI. Current CS
MRI approaches utilize sparsity of the image in the wavelet
or other transform domains to speed-up acquisition. Another
drawback of MRI is its poor signal-to-noise ratio (SNR), which
is proportional to the image slice thickness. In this paper, we use
the difference between adjacent slices as the sparse domain for CS
MRI. We propose to acquire thick MRI slices and to reconstruct
the thin slices from the thick slices’ data, utilizing the similarity
between adjacent thin slices. The acquisition of thick slices,
instead of thin ones, improves the total SNR of the reconstructed
image. Experimental results show that the image reconstruction
quality of the proposed method outperforms existing CS MRI
methods using the same number of measurements.

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) is a reliable imag-
ing method for diagnosis, evaluation and follow-up of brain
pathologies, as well as brain activity. However, the acquisition
of a routine brain MRI is a relatively slow process. As such,
it causes many difficulties, such as patient discomfort during
scanning and blurry images due to patient movements during
acquisition. Due to the clinical requirement for high resolution
MRI, which necessitates acquisition of many data samples at
long scanning times, many approaches for MRI acquisition
speed-up have been published.

In MRI, data is acquired in the Fourier domain of the
image, also known as k-space. Compressed sensing [1], [2]
techniques have been applied to MRI to significantly reduce
the amount of data required for image reconstruction by
under-sampling the k-space [3]. CS allows shorter acquisition
time by designing specific sub-sampling patterns of the k-
space. Reconstruction of the image from the sub-sampled
data is then performed by utilizing sparsity of the image in
a certain transform domain. The sampling strategy and the
reconstruction method are key elements to achieve high quality
images from under-sampled k-space data in CS MRI.

Over the past decade, various sampling strategies and re-
construction methods have been developed, utilizing a variety
of transform domains for image reconstruction with CS. Some
methods utilize the sparsity of MRI in the wavelet domain or
other spatial transform domain for various applications of MRI
[3], [4], [5]. Others speed-up dynamic MRI by utilizing the
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Fig. 1: Two adjacent slices
taken from 3D MRI scan
(top) and the difference im-
age between them (left).
Slice thickness is 1mm. It
can be seen that the differ-
ence image is sparse, thanks
to the high similarity be-
tween adjacent slices.

similarity of adjacent time frames in dynamic MRI [6], [7],
[8], [9], [10].

In some MRI applications, a 3D image is generated by
the acquisition of tens or hundreds of 2D images, coined as
image slices. In many cases, adjacent 2D slices are very similar
due to the slow spatial variations of the scanned object. This
phenomenon is emphasized in brain MRI, where 2D thin slices
are usually acquired. This similarity between adjacent slices
and the sparsity of the difference image are shown in Fig. 1.

In a recently published paper, Pang et al. [4] utilize the sim-
ilarity between adjacent slices for MRI image reconstruction
with undersampled k-space data. They designed a sampling
scheme that samples 25% of the k-space in some slices, and
1% of the k-space in other slices. The similarity between
adjacent slices is then used to estimate 25% of the k-space
of the low-sampled slices. CS based reconstruction is then
applied to all slices to obtain the entire image. While novel in
its basic idea, their method prioritizes some of the slices over
the others by non-uniform sampling over the slices.

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 1549



In this paper we aim at utilizing the sparse difference
between adjacent slices as a sparse transform domain for
the CS-MRI recovery problem. In MRI, the signal-to-noise
ratio (SNR) is proportional to the number of protons involved
in generating the measured signal. As a result, thick slices
provide better SNR than thin ones. Therefore, we simulate
the acquisition of under-sampled thick slices, to obtain data
with improved SNR over data obtained from thin slices. The
reconstruction of the thin slices from the sampled data is then
performed, exploiting the similarity between these thin slices.
In our approach, no priority is given to certain slices over
the others in the sampling process. Experimental results on
real MRI data show that the proposed method outperforms,
in terms of MSE versus the fully sampled k-space, previous
approaches for CS-MRI using the same number of samples.

II. METHOD

A. CS-MRI

CS MRI [3] reconstructs the image using randomly mea-
sured k-space samples. The formulation of the basic CS-MRI
application is given below. We represent the reconstructed 2D
image slice by a complex matrix, X, where g(·) denotes a
matrix function that transforms the image domain into a sparse
transform domain. Let fu(·) denote the under-sampled 2D
Fourier transform, corresponding to k-space under-sampling.
In Lustig et al. work [3], CS MRI reconstruction is obtained
by solving the following constrained optimization problem:

min
X

‖g(X)‖1 s.t. ‖fu(X)−Y‖F < ǫ (1)

where Y is the measured k-space data from the scanner, and
ǫ controls the fidelity of the reconstruction to the measured
data.

In brain MRI, the wavelet transform is used in most cases
as the sparsifying transform. CS-MRI exhibits high quality
reconstruction when sampling only about 15% of the k-
space [3]. However, we note that similarity between adjacent
slices, which exists in many MRI application, is not taken
into account in this CS-MRI reconstruction scheme, which
reconstructs a single 2D image image slice, X.

B. Proposed approach

Our approach is based on the acquisition of thick slices, to
obtain slices at improved SNR. We utilize similarity between
adjacent slices to reconstruct thin slices from the data of the
thick acquired slices. As a result, image distortions caused by
the summation of the thick measurement region are reduced.
Note that while it is practically feasible to acquire thick slices,
the results presented in this paper are based on a simulation
of thick slices, obtained by averaging adjacent thin slices.
Since in our simulations thin slices were acquired with a few
repetitions to improve their SNR, noise was added to those
slices to simulate the scenario of thin slices acquired with
no repetitions, thereby having poor SNR versus thick ones
acquired with no repetitions.

In our formulation, two thin adjacent reconstructed slices,
P1 and P2 are represented by a matrix XC :

XC =

[

P1

P2

]

(2)

Note that XC is not a thick slice but rather the concatenation
of two thin ones. In order to simulate a thick slice, we
generate a 2D image with a linear combination of P1 and
P2. We generate two thick slices for each pair of thin slices.
Therefore, in our measurement model we under-sample the
Fourier transform of the product AXC , where the matrix A

is defined as:

A =

[

a11I a12I
a21I a22I

]

(3)

In an actual MRI scanner, this weighting is achieved by
adjusting the waveform of the RF pulses such that each slice is
given a different weight in different acquisitions. Note in order
to reconstruct two thin slices with the CS-MRI approach of
Lustig et al. [3], one would have to under-sample the k-space
of each thin slice individually. In our approach, we actually
under-sample the k-space of two thick slices for the same
purpose. While we use the same number of k-space samples
as Lustig et al., the acquisition of thick slices provides samples
with improved SNR, leading to better overall results in terms
of MSE as will be further demonstrated in this paper.

By denoting the matrix B = [I − I], the minimization
problem for the reconstruction of XC , in its unconstrained
form is:

min
XC

‖fu(XC)−Y‖2 + λ‖BXC‖1 (4)

where Y denotes the under-sampled measurements of the
product AXC . The first term in (4) enforces the matching of
the solution to the measurements, taken in the Fourier domain
in MRI and the second term exploits sparsity of the difference
between adjacent slices. In our experiments we solved 4 with
the FISTA algorithm [11], where the value of λ was tested for
different values in the range of [10−3, 0.5].

III. EXPERIMENTAL RESULTS

We conducted evaluation of our method on contrast-
enhanced T1-weighted brain MRI. Image dimensions are
512× 512× 70 voxels, and physical dimensions of each voxel
are 0.5× 0.5× 1mm3.

Fig. 2 shows an example of original adjacent slices and
reconstructed slices with our method, obtained with only 10%
of the k-space. The mean square error (MSE) between the
reconstruction result and the full-sampled image is defined as:

MSE =
1

MN

N
∑

i=1

M
∑

j=1

(X̂Cij −XCij)
2 (5)

where X̂Cij and XCij are the (i, j)-th pixels of the estimated
and the fully sampled thin image slices, respectively, and N
and M are the images spatial dimensions. Note that the MSE
is computed over two adjacent thin slices, as defined in (2).

To provide a value of reference for the results obtained
with our method, we compare the MSE of our method with
the MSE for several other approaches for MRI reconstruction:

• CS MRI based on sparsity in the wavelet domain [3].
The CS equation for this approach is given in (1).
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Fig. 2: Example of two adjacent slices (top row). The recon-
struction with our method using 10% of the k-space is shown
(middle row), together with the error images between the fully
sampled and the reconstructed slices (bottom row).

• Interpolating CS (iCS) [4]. This method takes a vary-
ing number of samples from each thin slice, and uti-
lizes adjacent slices similarity to interpolate unknown
data using samples from adjacent slices.

• Naı̈ve approach of zero-filling the unknown k-space
locations after under-sampling the k-space. This
method provides the pratical upper bound on the MSE.

In order to perform a fair comparison between the above
approaches, we need to take into account that thick slices,
simulated in our experiments by averaging of thin slices, have
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Our method

Fig. 3: Experimental results. Each curve represents one of
the methods described in the paper. In can be seen that the
proposed method (black curve) outperforms other methods for
k-space sampling ratio >5%.

higher SNR than thin ones, which were used for reconstruction
by the other approaches. Since thin slices in our data were
taken with a number of repetitions to improve SNR, we added
noise to those slices, at a level that simulates the case as they
were acquired with no repetitions. Fig. 3 shows the comparison
results. We examined sampling scenarios of 2% to 23% of the
k-space, in each of the slices.

The MSE of naı̈ve zero filling reconstruction with no CS
is added in order to give the reader the sense of improvement
obtained with CS-based methods. The MSE is calculated as
the average MSE for the reconstruction of both adjacent slices
in all methods used for comparison, to allow fair comparison
between the methods.

The simulation shows that our approach achieves better
MSE then the other CS approaches, for sampling ratios above
5%. This can be seen in the numerical results presented in
Fig. 3, and in a representative example of our method’s result
shown in Fig. 4. Lower sampling ratios provide insufficient
information for adequate recovery, and therefore the results of
all CS-based methods for low sampling ratios are very similar.

Parameter sensitivity analysis: Our approach involves four
adjustable parameters, needed to be determined as the four
constants in the matrix A. While the performance of our
method depends on those parameters, it is important to show
that reliable results are obtained, regardless of their selection.
Therefore, we compute the MSE of our method obtained with
various selections of the parameters, obtained with 10% of the
k-space. The results are presented in Table I. In our analysis,
the parameter values were chosen arbitrarily between 0 and 1,
ensuring that the lines of A are linearly independent.

While in our analysis the parameter selection that provides
the best MSE is given in setting #4, other settings provide
proper results as well, which indicate the reliability of our
method when different parameters sets are used.
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TABLE I: Parameter sensitivity analysis. MSE results for
various selections of the matrix A.

Setting # a11 a12 a21 a22 MSE

1 0.5 0.5 0.25 0.75 0.034333
2 0.5 0.5 0.1 0.9 0.034343

3 0.5 0.5 0.4 0.6 0.037234
4 0.5 0.5 0.5 0.75 0.032429

5 0.3 0.7 0.6 0.4 0.049285

6 0.5 0.5 0 0.5 0.04031
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Fig. 4: Example of the results obtained with various CS MRI
merhods. Wavelet based reconstruction [3] (top), interpolated
CS [4] (middle) and our approach (bottom) are presented.
Images were reconstructed form sampling 23% of the k-space.

IV. DISCUSSION AND CONCLUSIONS

Our approach exhibits high quality reconstruction, and
provides reliable reconstruction results using only 5% samples
of the k-space. Additionally, our approach outperforms, in
terms of MSE, current CS MRI approaches. Reconstruction
of images with less than 5% of the k-space provides similar
results for all the methods tested in our experiments, due to
lack of sufficient amount of data.

For any sampling rates higher than 15%, it can be seen that
the basic CS MRI and our approach converge to a constant
MSE. However, our approach converges to an MSE which is
almost 4 times better than other CS approaches.

Our work provides a way to further reduce the acquisition
time for undersampled multi-slice, 2D MRI. In our method, the
missing data due to the random sampling of the k-space are
reconstructed using the adjacent slices. Using the CS approach
in conjunction with the assumption similarity between adjacent
slices, the undersampled slices are reconstructed properly.

While our reconstruction method can also be viewed as
an extension of Total Variation (TV) reconstruction based
methods, the novelty of our approach lies in the acquisition of
thick slices, weighted differently, for improved SNR. Future
research will focus on exploring variable random sampling
patters and extending the proposed method to acquires thicker
slices than presented in this paper, for improved SNR.

REFERENCES

[1] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Informa-

tion Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[2] Y. C. Eldar and G. Kutyniok, Compressed sensing: theory and appli-

cations. Cambridge University Press, 2012.

[3] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed
sensing mri,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp.
72–82, 2008.

[4] Y. Pang and X. Zhang, “Interpolated compressed sensing for 2d multiple
slice fast mr imaging,” PloS one, vol. 8, no. 2, p. e56098, 2013.

[5] G. Madelin, G. Chang, R. Otazo, A. Jerschow, and R. R. Regatte,
“Compressed sensing sodium MRI of cartilage at 7t: preliminary study,”
Journal of Magnetic Resonance, vol. 214, pp. 360–365, 2012.

[6] D. Kim, H. A. Dyvorne, R. Otazo, L. Feng, D. K. Sodickson, and
V. S. Lee, “Accelerated phase-contrast cine mri using k-t sparse-sense,”
Magnetic Resonance in Medicine, vol. 67, no. 4, pp. 1054–1064, 2012.
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