
  

 

Abstract—Schizophrenia, schizoaffective and bipolar 
disorders share some common symptoms. However, the 
biomarkers underlying those disorders remain unclear. In fact, 
there is still controversy about the schizoaffective disorder with 
respect to its validity of independent category and its 
relationship with schizophrenia and bipolar disorders. In this 
paper, based on brain functional networks extracted from 
resting-state fMRI using a recently proposed group information 
guided ICA (GIG-ICA) method, we explore the biomarkers for 
discriminating healthy controls, schizophrenia patients, bipolar 
patients, and patients with two symptom defined subsets of 
schizoaffective disorder, and then investigate the relationship 
between different groups. The results demonstrate that the 
discriminating regions mainly including frontal, parietal, 
precuneus, cingulate, supplementary motor, cerebellar, insular 
and supramarginal cortices perform well in distinguishing the 
different diagnostic groups. The results also suggest that 
schizoaffective disorder may be an independent disorder, 
although its subtype characterized by depressive episodes 
shares more similarity with schizophrenia. 

 

 

I. INTRODUCTION 

Schizophrenia (SZ), bipolar disorder (BP), and 
schizoaffective disorder (SAD) have overlapping symptoms, 
shared risk genes and co-occurrence within relatives [1,2]. SZ 
is characterized by altered perception, loss of motivation, and 
impairment in multiple cognitive domains. BP is marked by 
alternating episodes of mania and depression; some patients 
exhibit psychotic symptoms. SAD is diagnosed when 
symptom criteria for both SZ and BP are met. Among SAD, 
one type is characterized by manic, hypomanic or mixed 
episodes; the other is determined when the individual has 
depressive episodes exclusively. 

Recently, there has been increasing interest in identifying 
biomarkers of SZ, BP and SAD based on functional networks 
extracted from neuroimaging data, which is expected to 
provide adjunctive information for clinic diagnosis. Using 
oddball-task fMRI data, Garrity[3] found significant difference 
between SZ and healthy controls (HC) in the default mode 
network (DMN). Whitfield[4] found that SZ patients and their 
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first-degree relatives exhibited significantly reduced 
task-related suppression in medial prefrontal cortex. Ongur[5] 
applied independent component analysis (ICA) to resting-state 
fMRI of SZ including a few SAD, BP and HC; data suggested 
that both SZ and BP showed reduced connectivity in the 
medial prefrontal cortex of the DMN. Khadka[6] analyzed 
fMRI data of SZ, BP and their unaffected first-degree relatives 
using ICA, and found significant difference in seven 
functional networks. Argyelan[7] studied whole brain networks 
using a region-of-interest (ROI) based method, determining 
that SZ had lower functional connectivity than HC, whereas 
BP had functional connectivity intermediate to SZ and HC. 
Therefore, exploring functional networks based biomarkers 
for diagnosis of SZ, BP, and SAD can be potentially fruitful. 

There is also controversy about SAD’s validity as an 
independent category as well as its relationship to SZ and BP. 
Different opinions exist: (1) SAD is a independent 
diagnosis[1,2]. (2) SAD is an disease intermediate between SZ 
and BP[8,9]. (3) SAD represents the co-morbidity of 
schizophrenia and bipolar disorder[10]. (4) SAD is an atypical 
form of schizophrenia or bipolar disorder[11-13]. (5) SAD is a 
heterogeneous group composed by both SZ and BP[14]. In sum, 
no consensus about SAD has been reached. Therefore, 
investigating the relationship between SZ, BP and SAD based 
on brain functional networks extracted from resting-state 
fMRI is necessary.  

Although ICA has been widely used in brain functional 
network extraction, it is difficult to obtain individual networks 
with correspondence across subjects due to the random order 
of its resulting independent components (ICs). In this study, 
we use a variant of group ICA[15] called group information 
guided independent component analysis (GIG-ICA)[16] to 
accurately capture the individual functional networks and 
simultaneously preserve correspondence of networks across 
subjects. The method uses a new one-unit ICA with spatial 
reference approach to reconstruct the subject-specific maps 
enabling a single-subject optimization of independence while 
still using the group model to preserve the correspondence of 
the components across subjects. GIG-ICA enables us to 
capture the probable similarity and the subtle differences in 
functional networks expected for SZ, BP, and SAD. 

II. MATERIALS AND METHODS 

A. Materials 
Resting-state fMRI data of 20 HC, 20 SZ, 20 BP, 20 SAD 

with manic episode (SADM) and 13 SAD with depressive 
episode exclusively (SADD) scanned at the Olin 
Neuropsychiatry Research Center were analyzed (see Table 1). 
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Scans were acquired on a 3T dedicated head scanner (Siemens 
Allegra) using gradient echo planar imaging (EPI) with 
parameters: repeat time (TR)=1.5 s, echo time (TE)=27 ms, 
field of view=24 cm, acquisition matrix=64×64, flip 
angle=60˚,voxelsize=3.44mm×3.44mm×5 mm, slice 
thickness=5mm, number of slices=29. 

TABLE 1. DEMOGRAPHIC CHARACTERISTICS 

Subjects HC SZ BP SADM SADD 

Mean age (years) 33.9 28.8 31.2 35.2 39.9 

Male percent 50% 65% 40% 40% 20% 

B. Methods 
fMRI data were preprocessed using SPM8. The first ten 

volumes were discarded, and the remaining images were 
slice-time corrected and realigned to the first volume for 
head-motion correction. Subsequently, the images were 
spatially normalized to the MNI EPI template, resliced to 
3mm×3mm×3mm voxels, and smoothed with a Gaussian 
kernel with a full-width at half-maximum (FWHM) of 8 mm.  

The preprocessed fMRI data of all subjects were subjected 
to GIG-ICA for extracting their subject-specific functional 
networks. (1) Group level ICA[17, 18] was applied to all subjects’ 
datasets to compute group ICs, which includes two levels 
(subject level and group level) principal component analysis 
(PCA) applied to the temporally concatenated data and ICA 
applied to the dimensionality reduced data using Infomax 
algorithm. The number of ICs was set to 30, and ICASSO 
technique[19] with 20 ICA runs was used to get reliable group 
ICs. (2) Artifact group ICs were identified manually based on 
the group ICs and the related individual time courses (TCs). (3) 
The non-artifact group ICs were taken as references in a 
one-unit ICA with spatial reference using a multi-objective 
optimization solver to compute the subject-specific 
networks[16].  

To detect regions for distinguishing those disorders, we 
analyzed the obtained subject-specific function networks as 
follows. First, statistical map was created with voxel-wise 
one-sample t-tests (p<0.01 with FDR correction) on IC values 
of all subjects for each network. Then, network spatial maps in 
each statistically significant voxel of all subjects were entered 
into a voxel-wise five-level one-way ANCOVA with age and 
gender as covariates (p<0.05) for each network. Subsequently, 
based on the voxels showing a main effect of group difference 
extracted from ANCOVA, support vector machine recursive 
feature elimination (SVM-RFE) was applied to extract 
discriminating regions. Finally, for each discriminating region, 
mean Z-score among voxels within the region was calculated 
for each subject, then the mean Z-scores of different subjects 
were compared between any pair of groups using two-sample 
t-tests (p<0.01 with FDR correction). 

Based on those discriminating regions, projection and 
clustering methods were performed to investigate the 
relationship between different groups and examine the 
discrimination ability. For each subject, IC values within all 
those discriminating regions were concatenated as a feature 
vector. Based on the features, the similarity 𝑆 between any 
pair of subjects was obtained by computing Pearson 
correlation coefficient between their features, accordingly, the 

distance between any pair of subjects was specified as 1 − 𝑆. 
Therefore, distance matrix or similarity matrix (size: 93*93) 
reflecting the distance or similarity between all subjects can be 
obtained. To investigate the overall relationship between 
groups, we averaged the values in each sub-block of the 
distance matrix. To visualize the relationship between subjects, 
a projection method named t-Distributed Stochastic Neighbor 
Embedding (t-SNE)[20] was applied to project feature vectors 
from all subjects onto a 2D plane. Then, clustering approaches 
including K-Means with 100 times implementation, 
normalized cuts (Ncut)[21], and hierarchical clustering were 
performed separately to cluster those feature vectors. The 
cluster number was specified as 5 to evaluate the ability to 
capture the 5 pre-defined groups. 

III. RESULTS 

A. Brain functional networks extracted using GIG-ICA 
Based on the preprocessed resting-state fMRI data of 93 

subjects, 30 group ICs were obtained. Then, 18 artifact group 
ICs were detected and removed via manual inspection. 
Subsequently, 12 individual networks were estimated for each 
subject. One-sample t-tests results (FDR corrected, p<0.01) of 
networks are shown in Fig. 1, and these networks included 
fronto-parietal networks (IC 1 and IC 2), default mode 
networks (IC 3, IC 5, and IC 6), salience network (IC 4), 
auditory related network (IC 8), parietal network (IC 7), vision 
related networks (IC 9), visuospatial network (IC 10), 
cerebellum (IC 11), and sensory-motor network (IC 12).  

 
Figure 1. One-sample t-tests statistics (FDR corrected, p<0.01) of 12 
functional networks.  

B. Discriminating regions extracted from functional 
networks  

Fig. 2 shows primary discriminating regions with cluster 
size>50 extracted from functional networks. As summarized 
in Table 2, those regions mainly involved frontal, parietal, 
precuneus, cingulate, supplementary motor, cerebellar, insular, 
and supramarginal cortices.  

 
Figure 2. Primary discriminating regions extracted from 12 functional 
networks. Their related networks (ICs) are also denoted. The regions (a)-(k) 
are also reported  in Table 2. 
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TABLE 2. PARIMARY DISCRIMINATING REGIONS EXTRACTED FROM 
FUNCTIONAL NETWORKS,  ITS VOLUME IN CUBIC MILLIMETERS, AND ITS 
CORRESPONDING MONTREAL NEUROLOGICAL INSTITUTE COORDINATES 

IC Region 
ID 

Region (L/R) Volume  
(mm3) 

 (x, y, z) 

IC 2 (a) SupraMarginal (L) 1431 (-62,-40,34) 
IC 3 (b) Frontal_Med_Orb (R) 2052 (2,64,-8) 
IC 3 (c) Cingulate_Ant (L) 2484 (-1,42,23) 
IC 5 (d) Cingulate_Post (L) 1674 (-2,-43,22) 
IC 6 (e) Frontal_Med_Ord (R) 1431 (3,58,-4) 
IC 7 (f) Parietal_Inf (L) 1404 (-41,-49,41) 
IC 8 (g) Insula (R)  1674 (44,11,4) 

IC 10 (h) Parietal_Inf (L) 1404 (-54,-25,40) 
IC 10 (i) Precuneus (R) 3078 (8,-57,48) 
IC 11 (j) Cerebellum_Crus2 (L) 1674 (-28,-80,-35) 
IC 12 (k) Supp_Motor_Area (L) 4374 (-11,-5,74) 

 

Based on each discriminating region, the mean Z-score in 
the related functional network among voxels within the region 
was calculated for each subject (Fig. 3). For each region, the 
mean Z-scores of different subjects were then compared 
between any pair of groups using two-sample t-tests. It is 
observed that different regions represented different 
inter-group relationship, reflecting the complexity of those 
disorders. In the next section, we used features from all those 
discriminating regions to explore the relationship between 
groups.  

 
Figure 3. The bar plot of mean Z-score across subjects for each region for HC, 
SZ, BP, SADM, and SADD, separately. The two-sample t-tests between any 
pair of groups that survived p<0.01 with FDR correction are denoted using 
lines. The regions (a)-(k) are corresponding to regions reported  in Figure 2 
and Table 2. 

C. Relationship between groups  
To investigate the relationship between groups, IC values 

within all discriminating regions were concatenated as a 

feature vector for each subject. As shown in Fig. 4(A), the 
distance matrix between feature vectors from all subjects 
illustrates that subjects in the same group showed more 
similarity than others. Fig. 4(B) displays the mean distance 
matrix. SADM group and SADD group were the most similar 
to each other. For SZ group, SADD group was the closest 
group. Projection result using t-SNE (Fig. 5) shows that 
different groups were well separated, although some groups 
had great affinity or overlap. The center of the projected points 
from SADM group and that of SADD group were closer with 
each other than with other groups, which is consistent with 
that both SADM and SADD belong to SAD. From Fig. 5, we 
also find that BP group was closer to HC group than other 
groups, which indicates BP patients had more similar 
functional network pattern to HC than the patients with the 
other disorders. The clustering results of all subjects using 
K-Means, Ncut and hierarchical clustering are shown in Fig. 
6(A)-(C), which demonstrate that subjects from the same 
group can be well clustered, indicating that the  discriminating 
regions are reasonable. The linkage result from hierarchical 
clustering is shown in Fig. 6(D), which reflects how subjects 
were clustered into groups, thus reflects the relationship 
between groups. When the cluster number was set to 4, SADM 
and SADD were clustered into one cluster. When the cluster 
number was set to 3, SADM, SADD and SZ belonged to one 
cluster. When the cluster number was set to 2, one cluster 
included SADM, SADD and SZ, and the other cluster 
included HC and BP. Therefore, the conclusion from Fig. 6(D) 
is consistent to the above.  

 
Figure 4. (A) The distance matrix between the feature vectors from all 93 
subjects, and the x and y axis denote the subject ID. Subject ID 1-20 denote 
HC, subject ID 21-40 denote SZ, subject ID 41-60 denote BP, subject ID 
61-80 denote SADM, and subject ID 81-93 denote SADD. (B) The mean 
distance matrix obtained by averaging the values in each sub-block of the 
distance matrix. 

 
Figure 5. The projection results using t-SNE of all 93 subjects. Different 
points denote different subjects, and different colors denote different groups. 
Each ellipse reflects center (mean) and standard deviation for one group.  
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Figure 6. Clustering results of all 93 subjects obtained from (A) K-Means, (B) 
Ncut and (C) hierarchical clustering. (D) The linkage result from hierarchical 
clustering. Subject ID 1-20 denote HC, subject ID 21-40 denote SZ, subject ID 
41-60 denote BP, subject ID 61-80 denote SADM, and subject ID 81-93 
denote SADD. 

IV. DISCUSSIONS AND CONCLUSIONS 

SZ, BP, and SAD share some common symptoms, however, 
the biomarkers underlying their distinct neural mechanisms 
remain unclear. In fact, there is still a controversy about 
SAD’s independence as well as the relationship among these 
disorders. Exploring specific vs shared biomarkers of each 
disorder and the relationship among disorders from a 
functional network perspective is promising. In this study, we 
extracted brain functional networks using a recently proposed 
GIG-ICA method from resting-state fMRI data of HC, SZ, BP, 
and two types of SAD, and then explored the discriminating 
regions from functional networks, subsequently investigated 
the relationship between different groups and examined the 
discrimination ability of the founded biomarkers. The results 
demonstrate that in general, subjects from the same group 
have similar functional network patterns. SADM and SADD 
are the most similar groups to each other, which is consistent 
with these two subtypes both belonging to SAD. BP has more 
similarity to HC than other groups, which accords with that 
bipolar disorder has less impaired performance than the other 
two disorders. SADD group shares high similarity with SZ 
group in functional network pattern. Data from SZ, SADM 
and SADD groups resemble one another while BP and HC 
groups are close, in agreement with SAD being classified in 
the same diagnostic class as SZ in the Diagnostic and 
Statistical Manual of Mental Disorders (DSM-IV-TR). The 
results suggest that SAD is an independent disorder although 
SADD has high similarity with SZ. In addition, the study finds 
that the discriminating regions mainly comprise frontal, 
parietal, precuneus, cingulate, supplementary motor, 
cerebellar, insular, and supramarginal cortices, which can 
result in good performance for discriminating the four disorder 
and healthy control groups.  
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