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Abstract— In brain tumor surgery, soft-tissue deformation, 

known as brain shift, introduces inaccuracies in the application 

of the preoperative surgical plan and impedes the advancement 

of image-guided surgical (IGS) systems. Considerable progress 

in using patient-specific biomechanical models to update the 

preoperative images intraoperatively has been made. These 

model-update methods rely on accurate intraoperative 3D 

brain surface displacements. In this work, we investigate and 

develop a fully automatic method to compute these 3D 

displacements for lengthy (~15 minutes) stereo-pair video 

sequences acquired during neurosurgery. The first part of the 

method finds homologous points temporally in the video and 

the second part computes the nonrigid transformation between 

these homologous points. Our results, based on parts of 2 

clinical cases, show that this speedy and promising method can 

robustly provide 3D brain surface measurements for use with 

model-based updating frameworks. 

I. INTRODUCTION 

In brain tumor surgery, brain tissue deformations, 
commonly referred to as brain shift, can produce inaccuracies 
of 1-2.5cm in the preoperative plan and within image-guided 
surgery (IGS) systems [1]. Furthermore, the process of soft-
tissue resection can also compound the challenge of 
accounting for soft-tissue changes during IGS. As a result, 
establishing accurate correspondences between the patient’s 
physical state and their images is a challenging problem that 
potentially limits the scope of IGS systems. A method to 
account for the volumetric soft-tissue shift and deformation is 
to employ surface data and measurements to drive a patient-
specific computational biomechanical model to 
intraoperatively update the IGS system [2-3]. The textured 
laser range scanner (tLRS) [3-4] and stereovision systems are 
a few modalities researched for obtaining organ surface 
measurements intraoperatively [6-9]. We believe that 
persistent delivery of digitized 3D organ measurements to 
drive the model-update framework is sufficient to realize an 
active and superior IGS system. To achieve this, 
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correspondences between intraoperative 3D brain surfaces 
need to be established. 

The work in [4] proposed a semi-automatic method for 
establishing these correspondences in pre- and post-resection 
tLRS surfaces. Previous work in [5] involved performing 
nonrigid registration on the 2D surgical tLRS images before 
and after deformation and then finding the full 3D 
displacements by relating each 2D tLRS image to its 
corresponding acquired depth measurement. This type of 
approach resulted in smaller registration errors than 
performing fully 3D-to-3D nonrigid registration on the point 
clouds. We take a similar approach here but apply it on the 
stereovision system we have developed.  

Stereovision systems in [6-7] digitized the cortical surface 
in 3D and established manually delineated correspondences 
for short sequences of stereo-pair video.  Analysis of brain 
tumor surgery video sequences has been proposed in [9-10] 
for the tracking of the cortical surface. In [9], the proposed 
method tracked manually selected points at the bifurcations 
of vessels in short stereovision video sequences. The method 
in [10] developed a nonrigid registration algorithm for 
tracking entire vessels in short monocular video sequences. 
Using registration between the tLRS and the monocular 
video, brain shift was estimated. 

Though acceptable error were achieved in tracking the 
cortical surface in brain tumor surgery videos [9-10], the 
proposed methods were limited in scope when determining 
homologous points robustly and tracking was effective in 
short video sequences only. Furthermore, both approaches 
required frequent manual initializations and interventions. In 
this paper, we develop an algorithm that robustly determines 
homologous points in the highly dynamic and lengthy brain 
surgery video. These homologous points are used in a 
nonrigid registration framework to compute 2D 
deformations. With the stereovision methodology we 
developed for neurosurgery in [8], we are able to digitize 
these computed deformations to 3D yielding cortical surface 
displacements persistently throughout the surgery. We 
present our 2D registration errors on 13- and 15-minute video 
sequences from 2 clinical cases.  

II. METHODS 

A. Data acquisition 

Brain tumor surgery stereo-pair videos were acquired for 
the clinical cases under Vanderbilt University’s IRB 
approval. The videos were acquired at 30 frames per second 
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using the OPMI® Pentero™ operating microscope (Carl 
Zeiss, Inc., Oberkochen, Germany) equipped with two 
internal CCD cameras (Zeiss’ MediLive® Trio™), and have 
NTSC (720x540) image resolution. 

B. Stereovision point clouds 

Our stereovision work is based on our previous work 
presented in [8], where stereo calibration is achieved using a 
planar chessboard pattern shown in 10-15 different poses to 
the operating microscope’s stereo-pair cameras. Stereo 
calibration accuracy between 0.67-0.81 pixel

2
 is achieved. 

After stereo rectification, stereo correspondence is performed 
using the block-matching algorithm, with a window size of 
nBM, to find disparities between left and right camera images. 
These disparities are used in projecting the pixels in left and 
right images to 3D. It should be noted that each left-right 
image pair has an associated disparity image, which is used 
for finding 3D points. 

C. Homologous points 

We use the left camera video of the neurosurgery as input 
into our algorithm in Sections C and D. To robustly detect 
scale- and rotation-invariant salient features in the surgical 
video, we use the SURF detector because of its fast 
computation time [11]. The image location, in pixels, of these 
salient features is called a keypoint. The SURF feature 
detector yields a 128-float feature descriptor per keypoint in 

the image. Let    be the set of keypoints detected at ti and    
be the set of keypoints detected at tj, where ti < tj and are 
within a temporal range of a few seconds. A hessian 
threshold, thSURF, determines the number of SURF keypoints 
detected per image frame [11].  

A matching stage establishes correspondences between 

  and   sets of SURF keypoints. The putative matching 

between   and   are determined using an approximate 
nearest neighbor approach on the 128-float SURF feature 
descriptors of the keypoints using k-d trees. We use the 
computationally fast implementation of k-d trees from the 
FLANN library to get putative matches [12]. Though this 
approach results in correspondence mapping, it does so with 
several mismatches or outliers. To remove spurious matches, 
a homography matrix, H, is computed using the RANSAC 
method. Homography preserves the fact that if three 
keypoints lie on the same line in one image, then these 
keypoints will be collinear in the other image as well, as 
shown in (1a) [13-14]. The RANSAC-based estimation of H, 

 ̂, maximizes the number of inliers, n, of all the putative 

correspondences, (  ,   ), subject to the reprojection error of 
(1b),   . These n inliers are homologous points. Note that 
this procedure determines a different n for different image 
pairs of ti and tj. More details related to this method can be 
found in [8, 13]. This standard technique yields the 

homologous points, (  ,   ), where       and      . 
Homologous points from this fully automatic method steer 
the registration stages. Figure 1 shows the determined 
homologous points between two image frames for two 
different clinical cases. 

         (1a)
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   )          (1b) 

D. Registration 

The registration stage is split into rigid and nonrigid 
registration steps. The rigid registration accounts for global 
movement changes in the FOV of the surgery video. These 
types of global movements are attributed to movement of the 
operating microscope’s head and small movements 
introduced by the neurosurgeon while performing tumor 
resection. The rigid-body transformation, Tr, is computed 

between    to   , where    are the source points and    are 
the target points [15]. 

To account for local movement, a nonrigid registration 
refinement step is used on the rigidly transformed 
homologous points and is based on Thin Plate Splines [16]. 
The number of TPS control points used is equal to the n 
homologous SURF keypoints obtained from Section C. The 
smoothness of the resulting deformation field is controlled by 
a regularization parameter,  , [17], which is annealed over nnr 
iterations using   as the annealing parameter. This is 
described in (2), where a unique minimizer f solves the 
variational problem between the source and target points. The 
regularized TPS finds the deformation field between 
successive time points, ti and tj, as Fij. 
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E. Computing 3D displacements 

Let    be the set of keypoints detected at ti=0 or t0 of the 
left camera video. These    keypoints have associated 
disparities,   , and using the stereovision method of Section 
B, 3D points,   , are determined. The computed deformation 
field, Fij, is used for deforming    to tj and we denote this as 

  
 
. Since Fij is computed at every successive pair of time 

points, ti and tj,    is deformed in a temporal manner akin to 

the progression of the surgery. With   
 
 and associated stereo 

disparities,   , 3D points of deformed   
 
 can be estimated at 

tj as   . Now, displacements of the initial    keypoints from 

t0 deformed to tj and   
 
 keypoints from ti deformed to tj are 

computed as shown in (3). 

   
 
        

 
       (3)

 

Figure 1: The left and right columns are of different brain tumor surgery 

cases. Row (a) of both cases shows the results of nearest-neighbor matching 
between SURF keypoints at ti and tj time points. Row (b) shows the results of 

the homography procedure for cleaning up mismatches to find the 

homologous points between ti and tj. 
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Figure 2: Row (a) shows the result of registration from clinical case 1’s image frames ti (source) to tj (target), accurate registration (Fij) will make the target 

(blue) and source (green) circles overlap to form cyan (columns 3 and 4). Row (b) shows the keypoints, 𝝋𝟎, at t0 (69.1 seconds) deformed continuously in 

time by computed Fij. The locations of the blue keypoints, 𝝋𝟎, 𝝋𝟎
𝟏𝟖𝟖, 𝝋𝟎

𝟒𝟔𝟗, and 𝝋𝟎
𝟔𝟔𝟕 illustrate the tracking of points on the brain for the duration of surgery.  

 III. EXPERIMENTS AND RESULTS 

In this section, we present our results for the image 
registration algorithm outlined in Section II. Table 1 shows 
the different parameters and their values used in the 
presented algorithm. The algorithm was executed on a 
Windows 7 Dell Precision Desktop T1500 with Intel Core i7 
2.80 GHz Processor and 12GB RAM. The 3D point cloud 
computation took 0.5 seconds per stereo image pair. The 
homologous features computation and registration steps of 
Section D took 0.5 seconds. The deformation field 
computation, Fij, for a 720x540 image size took 1.5 seconds. 
Overall, the estimation of 3D displacements on the cortical 
surface using the fully automatic algorithm can be computed 
in 2.5 seconds per stereo image pair. To the best of our 
knowledge, this kind of speed in estimating 3D 
displacements of soft tissue has not been achieved. 

TABLE I.  PARAMETERS AND VALUES 

Variable Description Value 

nBM 

Block matching window size for 

stereo correspondence 
21 

thSURF Hessian threshold for SURF detector 100.0 

   
Homography matrix estimation’s 
reprojection error for RANSAC 

10.0 

   
Initial regularization parameter for 

thin plate splines 
106 

  Annealing parameter for TPS 0.93 

nnr Annealing iterations for TPS 3 

 

Figure 2 shows the registration of SURF keypoints 
between image frames of ti and tj, where ti and tj are 1 second 
apart, for clinical case 1. Note the different SURF keypoints 
selected per pair of images. From Figure 2, if the registration 
between the determined homologous points were accurate, 
then the blue (target points, tj) circles and green (source 
points, ti) circles would fully overlap. Figure 2(b) shows    
deformed using Fij computed from ti to tj for the image 
frames shown in Figure 2(a). It is apparent that the keypoints 

in   
 
, marked as green circles, are tracked accurately using 

the registration algorithm over time.  

To compute fiducial registration errors (FRE) and target 

registration errors (TRE) [15],   
 
are considered “fiducial” 

points that register image frames from ti to tj. On 13- and 15-
minute video sequences from 2 clinical cases, we achieve a 
mean FRE of 1.42   0.32 pixels with approximately 670 
fiducial keypoints on average per ti-tj image-pair. The FRE is 
computed automatically and indicates how well Fij aligns 
frames ti and tj. To compute TRE, a set of points have been 
marked manually at frames positioned at 25%, 50%, 75% and 
100% of the clinical video sequences. The TRE points 
marked at the frame t=0 of each clinical video sequence 
forms the   , which is continuously tracked by the proposed 
algorithm throughout the video sequence. The algorithm’s 
estimated locations of   

   ,   
   ,   

   , and   
     are 

compared with the manually delineated locations for 
computing the TRE. It is possible that the some of the many 
manually marked TRE points may not be visible in the later 
frames of the video (for example, at frame position of 75%) 
because of neuro patties, blood, and tumor resection. These 
points are not used in the TRE analysis. 14 and 21 target 
points were used in the TRE analysis for the 13- and 15-
minute video sequences. We achieve a mean TRE of 6.71   
1.95 pixels for the two video sequences. Table II shows the 
TRE values in greater detail. It should be noted that the 
locations of points marked manually for TRE analysis can be 
prone to operator error and bias. Therefore, the presented 
TRE results can be considered an upper bound on the TRE. 
Figure 3 illustrates TRE analysis for the 13-minute video. 

TABLE II.  TARGET REGISTRATION ERRORS (PIXELS) 

Video 25% 50% 75% 100%     

13 min 5.78 5.74 8.45 9.74 7.43   1.73 

15 mins 3.77 4.87 6.56 8.78 5.99   1.89 
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IV. DISCUSSION 

In this paper, we propose a method to track points on the 
cortical surface in brain tumor surgery videos acquired from 
the operating microscope. When combined with the 
stereovision methodology developed by our research group in 
[8], this speedy method furnishes the required intraoperative 
3D cortical surface displacements to drive the model-update 
pipeline for brain shift compensation. Though this promising 
method has been tested only on 2 clinical datasets, we are in 
the process of acquiring and validating this algorithm on 
more clinical cases. Furthermore, this presented algorithm 
has been tested on clinical video sequences of 13-15 minutes 
and will be tested on the complete hour-long surgical 
sequences. A study where a comparison between the 3D 
displacements obtained from this stereovision system and the 
displacements obtained from the pre- and post-resection 
tLRS is underway at the moment. A classification of the FOV 
into brain and non-brain regions can drive the registration 
stage in a more refined manner. This can help deliver 3D 
cortical surface displacements more accurately. With such an 
operating microscope-based system capable of persistent 
delivery of 3D displacements of the cortical surface, a strong, 
novel, surgical workflow friendly, and functional 
intraoperative IGS platform capable of real-time soft-tissue 
surgical guidance is quite achievable in the future.   
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Figure 3: TRE in the 13-minute video sequence. Green dots are targets that were manually delineated, blue dots are the algorithm’s estimations of the targets 

that are deformed continuously in time, and cyan indicates overlap between the green dots and the blue dots.  
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